设为首页 加入收藏

TOP

Hectorol Injection (Doxercalciferol Injection)
2016-07-22 08:13:09 来源: 作者: 【 】 浏览:343次 评论:0
  • DESCRIPTION

    Doxercalciferol, the active ingredient in Hectorol®, is a synthetic vitamin D2 analog that undergoes metabolic activation in vivo to form 1α,25-dihydroxyvitamin D2 (1α,25-(OH)2D2), a naturally occurring, biologically active form of vitamin D2. Hectorol is available as a sterile, clear, colorless aqueous solution for intravenous injection.

    Hectorol single-use injection is supplied in a stoppered 2 mL amber glass vial containing either 4 mcg/2 mL or 2 mcg/mL. Each vial includes an aluminum seal and yellow (4 mcg/2 mL) or green (2 mcg/mL) flip-off cap. Each milliliter (mL) of solution contains doxercalciferol, 2 mcg; ethanol, 100%, 0.05 mL; Polysorbate 20, 10 mg; sodium chloride, 1.5 mg; butylated hydroxytoluene, 0.02 mg; sodium phosphate dibasic, heptahydrate, 14.4 mg; sodium phosphate monobasic, monohydrate, 1.8 mg; and disodium edetate, 1.1 mg.

    Hectorol is also supplied as a multi-dose injection contained within a stoppered 2 mL amber glass vial containing 4 mcg/2 mL. Each vial includes an aluminum seal and an orange plastic flip-off cap. Each milliliter (mL) of solution contains doxercalciferol, 2 mcg; ethanol, 100%, 0.075 mL; Polysorbate 20, 10 mg; sodium chloride, 1.5 mg; butylated hydroxytoluene, 0.02 mg; sodium phosphate dibasic, heptahydrate, 14.4 mg; sodium phosphate monobasic, monohydrate, 1.8 mg; and disodium edetate, 1.1 mg.

    Doxercalciferol is a colorless crystalline compound with a calculated molecular weight of 412.66 and a molecular formula of C28H44O2. It is soluble in oils and organic solvents, but is relatively insoluble in water. Chemically, doxercalciferol is (1α,3β,5Z,7E,22E)-9,10-secoergosta-5,7,10(19),22-tetraene-1,3-diol and has the structural formula presented in Figure 1.

    Figure 1: Chemical Structure of Doxercalciferol
    Figure 1

    Other names frequently used for doxercalciferol are 1α-hydroxyvitamin D2, 1α-OH-D2, and 1α-hydroxyergocalciferol.

  • CLINICAL PHARMACOLOGY

    Vitamin D levels in humans depend on two sources: (1) exposure to the ultraviolet rays of the sun for conversion of 7-dehydrocholesterol in the skin to vitamin D3 (cholecalciferol) and (2) dietary intake of either vitamin D2 (ergocalciferol) or vitamin D3. Vitamin D2 and vitamin D3 must be metabolically activated in the liver and kidney before becoming fully active on target tissues. The initial step in the activation process is the introduction of a hydroxyl group in the side chain at C-25 by the hepatic enzyme, CYP 27 (a vitamin D-25-hydroxylase). The products of this reaction are 25-(OH)D2 and 25-(OH)D3, respectively. Further hydroxylation of these metabolites occurs in the mitochondria of kidney tissue, catalyzed by renal 25-hydroxyvitamin D-1-α-hydroxylase to produce 1α,25-(OH)2D2, the primary biologically active form of vitamin D2, and 1α,25-(OH)2D3 (calcitriol), the biologically active form of vitamin D3.

    Mechanism of Action

    Calcitriol (1α,25-(OH)2D3) and 1α,25-(OH)2D2 regulate blood calcium at levels required for essential body functions. Specifically, the biologically active vitamin D metabolites control the intestinal absorption of dietary calcium, the tubular reabsorption of calcium by the kidney and, in conjunction with parathyroid hormone (PTH), the mobilization of calcium from the skeleton. They act directly on bone cells (osteoblasts) to stimulate skeletal growth, and on the parathyroid glands to suppress PTH synthesis and secretion. These functions are mediated by the interaction of these biologically active metabolites with specific receptor proteins in the various target tissues. In uremic patients, deficient production of biologically active vitamin D metabolites (due to lack of or insufficient 25-hydroxyvitamin D-1-alpha-hydroxylase activity) leads to secondary hyperparathyroidism, which contributes to the development of metabolic bone disease in patients with renal failure.

    Pharmacokinetics and Metabolism

    After intravenous administration, doxercalciferol is activated by CYP 27 in the liver to form 1α,25-(OH)2D2 (major metabolite) and 1α,24-dihydroxyvitamin D2 (minor metabolite). Activation of doxercalciferol does not require the involvement of the kidneys.

    Peak blood levels of 1α,25-(OH)2D2 are reached at 8 +/- 5.9 hours (mean +/- SD) after a single intravenous dose of 5 mcg of doxercalciferol. The mean elimination half-life of 1α,25-(OH)2D2 after an oral dose is approximately 32 to 37 hours with a range of up to 96 hours. The mean elimination half-life in patients with end stage renal disease (ESRD) and in healthy volunteers appears to be similar following an oral dose. Hemodialysis causes a temporary increase in 1α,25-(OH)2D2 mean concentrations presumably due to volume contraction. 1α,25-(OH)2D2 is not removed from blood during hemodialysis.

    Clinical Studies

    The safety and effectiveness of Hectorol Injection were eva luated in two open-label, single-arm, multi-centered clinical studies (Study C and Study D) in a total of 70 patients with chronic kidney disease on hemodialysis (Stage 5 CKD). Patients in Study C were an average age of 54 years (range: 23–73), were 50% male, and were 61% African-American, 25% Caucasian, and 14% Hispanic, and had been on hemodialysis for an average of 65 months. Patients in Study D were an average age of 51 years (range: 28–76), were 48% male, and 100% African-American and had been on hemodialysis for an average of 61 months. This group of 70 of the 138 patients who had been treated with Hectorol Capsules in prior clinical studies (Study A and Study B) received Hectorol Injection in an open-label fashion for 12 weeks following an 8-week washout (control) period. Dosing of Hectorol Injection was initiated at the rate of 4 mcg administered at the end of each dialysis session (3 times weekly) for a total of 12 mcg per week. The dosage of Hectorol was adjusted in an attempt to achieve iPTH levels within a targeted range of 150 to 300 pg/mL. The dosage was increased by 2 mcg per dialysis session after 8 weeks of treatment if the iPTH levels remained above 300 pg/mL and were greater than 50% of baseline levels. The maximum dosage was limited to 18 mcg per week. If at any time during the trial iPTH fell below 150 pg/mL, Hectorol Injection was immediately suspended and restarted at a lower dosage the following week.

    Results

    Fifty-two of the 70 patients who were treated with Hectorol Injection achieved iPTH levels ≤ 300 pg/mL. Forty-one of these patients exhibited plasma iPTH levels ≤ 300 pg/mL on at least 3 occasions. Thirty-six patients had plasma iPTH levels < 150 pg/mL on at least one occasion during study participation.

    Mean weekly doses in Study C ranged from 8.9 mcg to 12.5 mcg. In Study D, the mean weekly doses ranged from 9.1 mcg to 11.6 mcg.

    Decreases in plasma iPTH from baseline values were calculated using as baseline the average of the last 3 values obtained during the 8-week washout period and are displayed in the table below. Plasma iPTH levels were measured weekly during the 12-week study.

    Table 1: iPTH Summary Data for Patients Receiving Hectorol® Injection:
    iPTH Level Study C
    (n=28)
    Study D
    (n=42)
    Combined Protocols
    (n=70)
    *
    Values were carried forward for the two patients on study for 10 weeks
    Treatment iPTH minus baseline iPTH
    Wilcoxon one-sample test
    Baseline (Mean of Weeks -2, -1, and 0)
    Mean (SE) 698 (60) 762 (65) 736 (46)
    Tags: 责任编辑:admin
    】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
    分享到QQ空间
    分享到: 
    上一篇SUPPRELIN LA (histrelin acetate.. 下一篇hectorol(doxercalciferol)
  • 相关栏目

    最新文章

    图片主题

    热门文章

    推荐文章

    相关文章

    广告位