d if tigecycline is administered with warfarin [see Clinical Pharmacology (12.3)].
Concurrent use of antibacterial drugs with oral contraceptives may render oral contraceptives less effective.
Tigecycline was not teratogenic in the rat or rabbit. In preclinical safety studies, C-labeled tigecycline crossed the placenta and was found in fetal tissues, including fetal bony structures. The administration of tigecycline was associated with slight reductions in fetal weights and an increased incidence of minor skeletal anomalies (delays in bone ossification) at exposures of 5 times and 1 times the human daily dose based on AUC in rats and rabbits, respectively (28 mcg·hr/mL and 6 mcg·hr/mL at 12 and 4 mg/kg/day). An increased incidence of fetal loss was observed at maternotoxic doses in the rabbits with exposure equivalent to human dose.
There are no adequate and well-controlled studies of tigecycline in pregnant women. TYGACIL should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.
Results from animal studies using C-labeled tigecycline indicate that tigecycline is excreted readily via the milk of lactating rats. Consistent with the limited oral bioavailability of tigecycline, there is little or no systemic exposure to tigecycline in nursing pups as a result of exposure via maternal milk.
It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when TYGACIL is administered to a nursing woman [see Warnings and Precautions ( 5.7 )].
Safety and effectiveness in pediatric patients below the age of 18 years have not been established. Because of effects on tooth development, use in patients under 8 years of age is not recommended [see Warnings and Precautions ( 5.7)].
Of the total number of subjects who received TYGACIL in Phase 3 clinical studies (n=2514), 664 were 65 and over, while 288 were 75 and over. No unexpected overall differences in safety or effectiveness were observed between these subjects and younger subjects, but greater sensitivity to adverse events of some older individuals cannot be ruled out.
No significant difference in tigecycline exposure was observed between healthy elderly subjects and younger subjects following a single 100 mg dose of tigecycline [see Clinical Pharmacology (12.3)].
No dosage adjustment is warranted in patients with mild to moderate hepatic impairment (Child Pugh A and Child Pugh B). In patients with severe hepatic impairment (Child Pugh C), the initial dose of tigecycline should be 100 mg followed by a reduced maintenance dose of 25 mg every 12 hours. Patients with severe hepatic impairment (Child Pugh C) should be treated with caution and monitored for treatment response [see Clinical Pharmacology (12.3) and Dosage and Administration (2.2)].
No specific information is available on the treatment of overdosage with tigecycline. Intravenous administration of TYGACIL at a single dose of 300 mg over 60 minutes in healthy volunteers resulted in an increased incidence of nausea and vomiting. In single-dose intravenous toxicity studies conducted with tigecycline in mice, the estimated median lethal dose (LD) was 124 mg/kg in males and 98 mg/kg in females. In rats, the estimated LD was 106 mg/kg for both sexes. Tigecycline is not removed in significant quantities by hemodialysis.
TYGACIL (tigecycline) is a tetracycline derivative (a glycylcycline) for intravenous infusion. The chemical name |