doses of 10 mg once daily had no effect on exposure to S-warfarin (CYP2C9 substrate) or R-warfarin (CYP3A4 substrate) after a single dose of 25 mg warfarin. The pharmacodynamic effect of warfarin on International Normalized Ratio (INR) was not affected by macitentan. The pharmacokinetics of macitentan and its active metabolite were not affected by warfarin.
Sildenafil: At steady-state, the exposure to sildenafil 20 mg t.i.d. was increased by 15% during concomitant administration of macitentan 10 mg once daily. Sildenafil, a CYP3A4 substrate, did not affect the pharmacokinetics of macitentan, while there was a 15% reduction in the exposure to the active metabolite of macitentan. These changes are not considered clinically relevant. In a placebo-controlled trial in patients with PAH, the efficacy and safety of macitentan in combination with sildenafil were demonstrated.
Ketoconazole: In the presence of ketoconazole 400 mg once daily, a strong CYP3A4 inhibitor, exposure to macitentan increased approximately 2-fold. The predicted increase was approximately 3-fold in the presence of ketoconazole 200 mg twice daily using physiologically based pharmacokinetic (PBPK) modelling. The uncertainties of such modelling should be considered. Exposure to the active metabolite of macitentan was reduced by 26%. Caution should be exercised when macitentan is administered concomitantly with strong CYP3A4 inhibitors (see section 4.4).
Cyclosporine A: Concomitant treatment with cyclosporine A 100 mg b.i.d., a combined CYP3A4 and OATP inhibitor, did not alter the steady-state exposure to macitentan and its active metabolite to a clinically relevant extent.
Strong CYP3A4 inducers: Concomitant treatment with rifampicin 600 mg daily, a potent inducer of CYP3A4, reduced the steady-state exposure to macitentan by 79% but did not affect the exposure to the active metabolite. Reduced efficacy of macitentan in the presence of a potent inducer of CYP3A4 such as rifampicin should be considered. The combination of macitentan with strong CYP3A4 inducers should be avoided (see section 4.4).
Hormonal contraceptives: Macitentan 10 mg once daily did not affect the pharmacokinetics of an oral contraceptive (norethisterone 1 mg and ethinyl estradiol 35 µg).
4.6 Fertility, pregnancy, and lactation
Pregnancy
There are no data on the use of macitentan in pregnant women. Animal studies have shown reproductive toxicity (see section 5.3). The potential risk for humans is still unknown. Opsumit is contraindicated during pregnancy and in women of childbearing potential who are not using reliable contraception (see section 4.3).
Use in women of childbearing potential
Opsumit treatment should only be initiated in women of childbearing potential when the absence of pregnancy has been verified, appropriate advice on contraception provided, and reliable contraception is practised (see sections 4.3 and 4.4). Women should not become pregnant for 1 month after discontinuation of Opsumit. Monthly pregnancy tests during treatment with Opsumit are recommended to allow the early detection of pregnancy.
Breastfeeding
It is not known whether macitentan is excreted into human breast milk. In rats, macitentan and its metabolites are excreted into milk during lactation (see section 5.3). A risk to the breastfeeding child cannot be excluded. Opsumit is contraindicated during breastfeeding (see section 4.3).
Male fertility
The development of testicular tubular atrophy in male a |