only very weak effects on norepinephrine and dopamine neuronal reuptake. In vitro studies have shown that sertraline has no significant affinity for adrenergic (alpha1, alpha2, beta), cholinergic, GABA, dopaminergic, histaminergic, serotonergic (5HT1A, 5HT1B, 5HT2), or benzodiazepine receptors; antagonism of such receptors has been hypothesized to be associated with various anticholinergic, sedative, and cardiovascular effects for other psychotropic drugs. The chronic administration of sertraline was found in animals to down regulate brain norepinephrine receptors, as has been observed with other drugs effective in the treatment of major depressive disorder. Sertraline does not inhibit monoamine oxidase.
Pharmacokinetics
Systemic Bioavailability
In man, following oral once-daily dosing over the range of 50 to 200 mg for 14 days, mean peak plasma concentrations (Cmax) of sertraline occurred between 4.5 to 8.4 hours post-dosing. The average terminal elimination half-life of plasma sertraline is about 26 hours. Based on this pharmacokinetic parameter, steady-state sertraline plasma levels should be achieved after approximately one week of once-daily dosing. Linear dose-proportional pharmacokinetics were demonstrated in a single dose study in which the Cmax and area under the plasma concentration time curve (AUC) of sertraline were proportional to dose over a range of 50 to 200 mg. Consistent with the terminal elimination half-life, there is an approximately two-fold accumulation, compared to a single dose, of sertraline with repeated dosing over a 50 to 200 mg dose range. The single dose bioavailability of sertraline tablets is approximately equal to an equivalent dose of solution.
In a relative bioavailability study comparing the pharmacokinetics of 100 mg sertraline as the oral solution to a 100 mg sertraline tablet in 16 healthy adults, the solution to tablet ratio of geometric mean AUC and Cmax values were 114.8% and 120.6%, respectively. 90% confidence intervals (CI) were within the range of 80–125% with the exception of the upper 90% CI limit for Cmax which was 126.5%.
The effects of food on the bioavailability of the sertraline tablet and oral concentrate were studied in subjects administered a single dose with and without food. For the tablet, AUC was slightly increased when drug was administered with food but the Cmax was 25% greater, while the time to reach peak plasma concentration (Tmax) decreased from 8 hours post-dosing to 5.5 hours. For the oral concentrate, Tmax was slightly prolonged from 5.9 hours to 7.0 hours with food.
Metabolism
Sertraline undergoes extensive first pass metabolism. The principal initial pathway of metabolism for sertraline is N-demethylation. N-desmethylsertraline has a plasma terminal elimination half-life of 62 to 104 hours. Both in vitro biochemical and in vivo pharmacological testing have shown N-desmethylsertraline to be substantially less active than sertraline. Both sertraline and N-desmethylsertraline undergo oxidative deamination and subsequent reduction, hydroxylation, and glucuronide conjugation. In a study of radiolabeled sertraline involving two healthy male subjects, sertraline accounted for less than 5% of the plasma radioactivity. About 40–45% of the administered radioactivity was recovered in urine in 9 days. Unchanged sertraline was not detectable in the urine. For the same period, about 40–45% of the administered radioactivity was accounted f