Rx only
For subcutaneous use only
DESCRIPTION
Vidaza™ (azacitidine for injectable suspension) contains azacitidine, which is a pyrimidine nucleoside analog of cytidine. Azacitidine is 4-amino-1-β-D-ribofuranosyl-s-triazin-2(1H)-one. The structural formula is as follows:

The empirical formula is C8H12N4O5. The molecular weight is 244. Azacitidine is a white to off-white solid. Azacitidine was found to be insoluble in acetone, ethanol, and methyl ethyl ketone; slightly soluble in ethanol/water (50/50), propylene glycol, and polyethylene glycol; sparingly soluble in water, water saturated octanol, 5% dextrose in water, N-methyl-2-pyrrolidone, normal saline and 5% Tween 80 in water; and soluble in dimethylsulfoxide (DMSO).
The finished product is supplied in a sterile form for reconstitution and subcutaneous injection only. Vials of Vidaza contain 100 mg of azacitidine and 100 mg mannitol as a sterile lyophilized powder.
CLINICAL PHARMACOLOGY
Mechanism of Action
Vidaza is believed to exert its antineoplastic effects by causing hypomethylation of DNA and direct cytotoxicity on abnormal hematopoietic cells in the bone marrow. The concentration of azacitidine required for maximum inhibition of DNA methylation in vitro does not cause major suppression of DNA synthesis. Hypomethylation may restore normal function to genes that are critical for differentiation and proliferation. The cytotoxic effects of azacitidine cause the death of rapidly dividing cells, including cancer cells that are no longer responsive to normal growth control mechanisms. Non-proliferating cells are relatively insensitive to Vidaza.
Pharmacokinetics
The pharmacokinetics of azacitidine were studied in six MDS patients following a single 75 mg/m2 subcutaneous (SC) dose and a single 75 mg/m2 intravenous (IV) dose. Azacitidine is rapidly absorbed after SC administration; the peak plasma azacitidine concentration of 750±403 ng/ml occurred in 0.5 hour. The bioavailability of SC azacitidine relative to IV azacitidine is approximately 89%, based on area under the curve. Mean volume of distribution following IV dosing is 76 ± 26 L. Mean apparent SC clearance is 167 ± 49 L/hour and mean half-life after SC administration is 41 ± 8 minutes.
Published studies indicate that urinary excretion is the primary route of elimination of azacitidine and its metabolites. Following IV administration of radioactive azacitidine to 5 cancer patients, the cumulative urinary excretion was 85% of the radioactive dose. Fecal excretion accounted for <1% of administered radioactivity over three days. Mean excretion of radioactivity in urine following SC administration of 14C-azacitidine was 50%. The mean elimination half-lives of total radioactivity (azacitidine and its metabolites) were similar after IV and SC administrations, about 4 hours.
Special Populations
The effects of renal or hepatic impairment, gender, age, or race on the pharmacokinetics of azacitidine have not been studied (see CONTRAINDICATIONS, PRECAUTIONS and DOSAGE AND ADMINISTRATION).
Drug-Drug Interactions
Drug interaction studies with azacitidine have not been conducted.
An in vitro study of azacitidine incubation in human liver fractions indicated that azacitidine may be metabolized by the liver. Whether azacitidine metabolism may be affected by known microsomal enzyme inhibitors