设为首页 加入收藏

TOP

Losartan Potassium and Hydrochlorothiazide Tablets, USP
2017-09-10 14:17:00 来源: 作者: 【 】 浏览:471次 评论:0

DESCRIPTION

Losartan potassium and hydrochlorothiazide 50 mg/12.5 mg, losartan potassium and hydrochlorothiazide 100 mg/12.5 mg and losartan potassium and hydrochlorothiazide 100 mg/25 mg, combine an angiotensin II receptor (type AT1) antagonist and a diuretic, hydrochlorothiazide.

Losartan potassium, a non-peptide molecule, is chemically described as 2-butyl-4-chloro-1-[p-(o-1H-tetrazol-5-ylphenyl)benzyl]imidazole-5-methanol monopotassium salt. Its molecular formula is C22H22ClKN6O, and its structural formula is:

Losartan Potassium Chemical Structure

Losartan potassium USP is a white to off-white powder with a molecular weight of 461.01. It is freely soluble in water, soluble in alcohols, and slightly soluble in common organic solvents, such as acetonitrile and methyl ethyl ketone.

Oxidation of the 5-hydroxymethyl group on the imidazole ring results in the active metabolite of losartan.

Hydrochlorothiazide is 6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide. Its molecular formula is C7H8ClN3O4S2 and its structural formula is:

Hydrochlorothiazide Chemical Structure

Hydrochlorothiazide USP is a white or practically white, practically odorless, crystalline powder with a molecular weight of 297.74, which is slightly soluble in water, but freely soluble in sodium hydroxide solution.

Losartan potassium and hydrochlorothiazide is available for oral administration in three tablet combinations of losartan and hydrochlorothiazide. Losartan potassium and hydrochlorothiazide tablets USP, 50 mg/12.5 mg contain 50 mg of losartan potassium USP and 12.5 mg of hydrochlorothiazide USP. Losartan potassium and hydrochlorothiazide tablets USP, 100 mg/12.5 mg contain 100 mg of losartan potassium USP and 12.5 mg of hydrochlorothiazide USP. Losartan potassium and hydrochlorothiazide tablets USP, 100 mg/25 mg contain 100 mg of losartan potassium USP and 25 mg of hydrochlorothiazide USP. Inactive ingredients are colloidal silicon dioxide, hydroxypropyl cellulose, hypromellose, lactose monohydrate, magnesium stearate, microcrystalline cellulose, pregelatinised starch (maize), and titanium dioxide. Losartan potassium and hydrochlorothiazide 50 mg/12.5 mg and losartan potassium and hydrochlorothiazide 100 mg/25 mg also contain D&C yellow No. 10 aluminum lake.

Losartan potassium and hydrochlorothiazide 50 mg/12.5 mg contains 4.24 mg (0.108 mEq) of potassium, losartan potassium and hydrochlorothiazide 100 mg/12.5 mg contains 8.48 mg (0.217 mEq) of potassium, and losartan potassium and hydrochlorothiazide 100 mg/25 mg contains 8.48 mg (0.217 mEq) of potassium.

CLINICAL PHARMACOLOGY

Mechanism of Action

Angiotensin II [formed from angiotensin I in a reaction catalyzed by angiotensin converting enzyme (ACE, kininase II)], is a potent vasoconstrictor, the primary vasoactive hormone of the renin-angiotensin system and an important component in the pathophysiology of hypertension. It also stimulates aldosterone secretion by the adrenal cortex. Losartan and its principal active metabolite block the vasoconstrictor and aldosterone-secreting effects of angiotensin II by selectively blocking the binding of angiotensin II to the AT1 receptor found in many tissues, (e.g., vascular smooth muscle, adrenal gland). There is also an AT2 receptor found in many tissues but it is not known to be associated with cardiovascular homeostasis. Both losartan and its principal active metabolite do not exhibit any partial agonist activity at the AT1 receptor and have much greater affinity (about 1000-fold) for the AT1 receptor than for the AT2 receptor. In vitro binding studies indicate that losartan is a reversible, competitive inhibitor of the AT1 receptor. The active metabolite is 10 to 40 times more potent by weight than losartan and appears to be a reversible, non-competitive inhibitor of the AT1 receptor.

Neither losartan nor its active metabolite inhibits ACE (kininase II, the enzyme that converts angiotensin I to angiotensin II and degrades bradykinin); nor do they bind to or block other hormone receptors or ion channels known to be important in cardiovascular regulation.

Hydrochlorothiazide is a thiazide diuretic. Thiazides affect the renal tubular mechanisms of electrolyte reabsorption, directly increasing excretion of sodium and chloride in approximately equivalent amounts. Indirectly, the diuretic action of hydrochlorothiazide reduces plasma volume, with consequent increases in plasma renin activity, increases in aldosterone secretion, increases in urinary potassium loss, and decreases in serum potassium. The renin-aldosterone link is mediated by angiotensin II, so coadministration of an angiotensin II receptor antagonist tends to reverse the potassium loss associated with these diuretics.

The mechanism of the antihypertensive effect of thiazides is unknown.

Pharmacokinetics

General

Losartan Potassium

Losartan is an orally active agent that undergoes substantial first-pass metabolism by cytochrome P450 enzymes. It is converted, in part, to an active carboxylic acid metabolite that is responsible for most of the angiotensin II receptor antagonism that follows losartan treatment. The terminal half-life of losartan is about 2 hours and of the metabolite is about 6 to 9 hours. The pharmacokinetics of losartan and its active metabolite are linear with oral losartan doses up to 200 mg and do not change over time. Neither losartan nor its metabolite accumulate in plasma upon repeated once-daily dosing.

Following oral administration, losartan is well absorbed (based on absorption of radiolabeled losartan) and undergoes substantial first-pass metabolism; the systemic bioavailability of losartan is approximately 33%. About 14% of an orally-administered dose of losartan is converted to the active metabolite. Mean peak concentrations of losartan and its active metabolite are reached in 1 hour and in 3 to 4 hours, respectively. While maximum plasma concentrations of losartan and its active metabolite are approximately equal, the AUC of the metabolite is about 4 times as great as that of losartan. A meal slows absorption of losartan and decreases its Cmax but has only minor effects on losartan AUC or on the AUC of the metabolite (about 10% decreased).

Both losartan and its active metabolite are highly bound to plasma proteins, primarily albumin, with plasma free fractions of 1.3% and 0.2%, respectively. Plasma protein binding is constant over the concentration range achieved with recommended doses. Studies in rats indicate that losartan crosses the blood-brain barrier poorly, if at all.

Losartan metabolites have been identified in human plasma and urine. In addition to the active carboxylic acid metabolite, several inactive metabolites are formed. Following oral and intravenous administration of 14C-labeled losartan potassium, circulating plasma radioactivity is primarily attributed to losartan and its active metabolite. In vitro studies indicate that cytochrome P450 2C9 and 3A4 are involved in the biotransformation of losartan to its metabolites. Minimal conversion of losartan to the active metabolite (less than 1% of the dose compared to 14% of the dose in normal subjects) was seen in about one percent of individuals studied.

The volume of distribution of losartan is about 34 liters and of the active metabolite is about 12 liters. Total plasma clearance of losartan and the active metabolite is about 600 mL/min and 50 mL/min, respectively, with renal clearance of about 75 mL/min and 25 mL/min, respectively. When losartan is administered orally, about 4% of the dose is excreted unchanged in the urine and about 6% is excreted in urine as active metabolite. Biliary excretion contributes to the elimination of losartan and its metabolites. Following oral 14C-labeled losartan, about 35% of radioactivity is recovered in the urine and about 60% in the feces. Following an intravenous dose of 14C-labeled losartan, about 45% of radioactivity is recovered in the urine and 50% in the feces.

Special Populations

Pediatric

Losartan pharmacokinetics have been investigated in patients 6 to 16 years (see PRECAUTIONS, Pediatric Use).

Geriatric and Gender

Losartan pharmacokinetics have been investigated in the elderly (65 to 75 years) and in both genders. Plasma concentrations of losartan and its active metabolite are similar in elderly and young hypertensives. Plasma concentrations of losartan were about twice as high in female hypertensives as male hypertensives, but concentrations of the active metabolite were similar in males and females.

Renal Insufficiency

Losartan

Following oral administration, plasma concentrations and AUCs of losartan and its active metabolite are increased by 50 to 90% in patients with mild (creatinine clearance of 50 to 74 mL/min) or moderate (creatinine clearance 30 to 49 mL/min) renal insufficiency. In this study, renal clearance was reduced by 55 to 85% for both losartan and its active metabolite in patients with mild or moderate renal insufficiency. Neither losartan nor its active metabolite can be removed by hemodialysis.

Hydrochlorothiazide

Following oral administration, the AUC for hydrochlorothiazide is increased by 70 and 700% for patients with mild and moderate renal insufficiency, respectively. In this study, renal clearance of hydrochlorothiazide decreased by 45 and 85% in patients with mild and moderate renal impairment, respectively.

The usual regimens of therapy with losartan potassium and hydrochlorothiazide may be followed as long as the patient's creatinine clearance is >30 mL/min. In patients with more severe renal impairment, loop diuretics are preferred to thiazides, so losartan potassium and hydrochlorothiazide is not recommended (see DOSAGE AND ADMINISTRATION).

Hepatic Insufficiency

Following oral administration in patients with mild to moderate alcoholic cirrhosis of the liver, plasma concentrations of losartan and its active metabolite were, respectively, 5 times and about 1.7 times those in young male volunteers. Compared to normal subjects, the total plasma clearance of losartan in patients with hepatic insufficiency was about 50% lower, and the oral bioavailability was about 2 times higher. The lower starting dose of losartan recommended for use in patients with hepatic impairment cannot be given using losartan potassium and hydrochlorothiazide. Its use in such patients as a means of losartan titration is, therefore, not recommended (see DOSAGE AND ADMINISTRATION).

Drug Interactions

Losartan Potassium

Losartan, administered for 12 days, did not affect the pharmacokinetics or pharmacodynamics of a single dose of warfarin. Losartan did not affect the pharmacokinetics of oral or intravenous digoxin. There is

以下是“全球医药”详细资料
Tags: 责任编辑:admin
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到QQ空间
分享到: 
上一篇Rubraca Tablets (Rucaparib) 下一篇Cleviprex (clevidipine) injecta..

相关栏目

最新文章

图片主题

热门文章

推荐文章

相关文章

广告位