WARNINGS
TRIZIVIR contains 3 nucleoside analogues (abacavir sulfate, lamivudine, and zidovudine) and is intended only for patients whose regimen would otherwise include these 3 components.
Hypersensitivity Reactions:
Serious and sometimes fatal hypersensitivity reactions have been associated with abacavir sulfate, a component of TRIZIVIR. Hypersensitivity to abacavir is a multi-organ clinical syndrome usually characterized by a sign or symptom in 2 or more of the following groups: (1) fever, (2) rash, (3) gastrointestinal (including nausea, vomiting, diarrhea, or abdominal pain), (4) constitutional (including generalized malaise, fatigue, or achiness), and (5) respiratory (including dyspnea, cough, or pharyngitis). Discontinue TRIZIVIR as soon as a hypersensitivity reaction is suspected.
Patients who carry the HLA-B*5701 allele are at high risk for experiencing a hypersensitivity reaction to abacavir. Prior to initiating therapy with abacavir, screening for the HLA-B*5701 allele is recommended; this approach has been found to decrease the risk of hypersensitivity reaction. Screening is also recommended prior to reinitiation of abacavir in patients of unknown HLA-B*5701 status who have previously tolerated abacavir. HLA-B*5701-negative patients may develop a suspected hypersensitivity reaction to abacavir; however, this occurs significantly less frequently than in HLA-B*5701-positive patients.
Regardless of HLA-B*5701 status, permanently discontinue TRIZIVIR if hypersensitivity cannot be ruled out, even when other diagnoses are possible.
Following a hypersensitivity reaction to abacavir, NEVER restart TRIZIVIR or any other abacavir-containing product because more severe symptoms can occur within hours and may include life-threatening hypotension and death.
Reintroduction of TRIZIVIR or any other abacavir-containing product, even in patients who have no identified history or unrecognized symptoms of hypersensitivity to abacavir therapy, can result in serious or fatal hypersensitivity reactions. Such reactions can occur within hours (see WARNINGS and PRECAUTIONS: Information for Patients).
Hematologic Toxicity:
Zidovudine has been associated with hematologic toxicity including neutropenia and severe anemia, particularly in patients with advanced Human Immunodeficiency Virus (HIV-1) disease (see WARNINGS). Prolonged use of zidovudine has been associated with symptomatic myopathy.
Lactic Acidosis and Severe Hepatomegaly:
Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of nucleoside analogues alone or in combination, including abacavir, lamivudine, zidovudine, and other antiretrovirals (see WARNINGS).
Exacerbations of Hepatitis B:
Severe acute exacerbations of hepatitis B have been reported in patients who are co-infected with hepatitis B virus (HBV) and HIV-1 and have discontinued lamivudine, which is one component of TRIZIVIR. Hepatic function should be monitored closely with both clinical and laboratory follow-up for at least several months in patients who discontinue TRIZIVIR and are co-infected with HIV-1 and HBV. If appropriate, initiation of anti-hepatitis B therapy may be warranted (see WARNINGS).
DESCRIPTION
TRIZIVIR:
TRIZIVIR Tablets contain the following 3 synthetic nucleoside analogues: abacavir sulfate (ZIAGEN®), lamivudine (also known as EPIVIR® or 3TC), and zidovudine (also known as RETROVIR®, azidothymidine, or ZDV) with inhibitory activity against HIV-1.
TRIZIVIR Tablets are for oral administration. Each film-coated tablet contains the active ingredients 300 mg of abacavir as abacavir sulfate, 150 mg of lamivudine, and 300 mg of zidovudine, and the inactive ingredients magnesium stearate, microcrystalline cellulose, and sodium starch glycolate. The tablets are coated with a film (OPADRY® green 03B11434) that is made of FD&C Blue No. 2, hypromellose, polyethylene glycol, titanium dioxide, and yellow iron oxide.
Abacavir Sulfate:
The chemical name of abacavir sulfate is (1S,cis)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol sulfate (salt) (2:1). Abacavir sulfate is the enantiomer with 1S, 4R absolute configuration on the cyclopentene ring. It has a molecular formula of (C14H18N6O)2•H2SO4 and a molecular weight of 670.76 daltons. It has the following structural formula:
Abacavir sulfate is a white to off-white solid with a solubility of approximately 77 mg/mL in distilled water at 25°C.
In vivo, abacavir sulfate dissociates to its free base, abacavir. In this insert, all dosages for ZIAGEN (abacavir sulfate) are expressed in terms of abacavir.
Lamivudine:
The chemical name of lamivudine is (2R,cis)-4-amino-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1H)-pyrimidin-2-one. Lamivudine is the (-)enantiomer of a dideoxy analogue of cytidine. Lamivudine has also been referred to as (-)2′,3′-dideoxy, 3′-thiacytidine. It has a molecular formula of C8H11N3O3S and a molecular weight of 229.3 daltons. It has the following structural formula:
Lamivudine is a white to off-white crystalline solid with a solubility of approximately 70 mg/mL in water at 20°C.
Zidovudine:
The chemical name of zidovudine is 3′-azido-3′-deoxythymidine. It has a molecular formula of C10H13N5O4 and a molecular weight of 267.24 daltons. It has the following structural formula:
Zidovudine is a white to beige, crystalline solid with a solubility of 20.1 mg/mL in water at 25°C.
MICROBIOLOGY
Mechanism of Action:
Abacavir: Abacavir is a carbocyclic synthetic nucleoside analogue. Abacavir is converted by cellular enzymes to the active metabolite, carbovir triphosphate (CBV-TP), an analogue of deoxyguanosine-5′-triphosphate (dGTP). CBV-TP inhibits the activity of HIV-1 reverse transcriptase (RT) both by competing with the natural substrate dGTP and by its incorporation into viral DNA. The lack of a 3′-OH group in the incorporated nucleotide analogue prevents the formation of the 5′ to 3′ phosphodiester linkage essential for DNA chain elongation, and therefore, the viral DNA growth is terminated. CBV-TP is a weak inhibitor of cellular DNA polymerases α, β, and γ.
Lamivudine: Lamivudine is a synthetic nucleoside analogue. Intracellularly, lamivudine is phosphorylated to its active 5′-triphosphate metabolite, lamivudine triphosphate (3TC-TP). The principal mode of action of 3TC-TP is inhibition of RT via DNA chain termination after incorporation of the nucleotide analogue. 3TC-TP is a weak inhibitor of cellular DNA polymerases α, β, and γ.
Zidovudine: Zidovudine is a synthetic nucleoside analogue. Intracellularly, zidovudine is phosphorylated to its active 5′-triphosphate metabolite, zidovudine triphosphate (ZDV-TP). The principal mode of action of ZDV-TP is inhibition of RT via DNA chain termination after incorporation of the nucleotide analogue. ZDV-TP is a weak inhibitor of the cellular DNA polymerases α and γ and has been reported to be incorporated into the DNA of cells in culture.
Antiviral Activity:
Abacavir: The antiviral activity of abacavir against HIV-1 was eva luated against a T-cell tropic laboratory strain HIV-1IIIB in lymphoblastic cell lines, a monocyte/macrophage tropic laboratory strain HIV-1BaL in primary monocytes/macrophages, and clinical isolates in peripheral blood mononuclear cells. The concentration of drug necessary to effect viral replication by 50 percent (EC50) ranged from 3.7 to 5.8 μM (1 μM = 0.28 mcg/mL) and 0.07 to 1.0 μM against HIV-1IIIB and HIV-1BaL, respectively, and was 0.26 ± 0.18 μM against 8 clinical isolates. The EC50 values of abacavir against different HIV-1 clades (A-G) ranged from 0.0015 to 1.05 μM, and against HIV-2 isolates, from 0.024 to 0.49 μM. Abacavir had synergistic activity in cell culture in combination with the nucleoside reverse transcriptase inhibitor (NRTI) zidovudine, the non-nucleoside reverse transcriptase inhibitor (NNRTI) nevirapine, and the protease inhibitor (PI) amprenavir; and additive activity in combination with the NRTIs didanosine, emtricitabine, lamivudine, stavudine, tenofovir, and zalcitabine. Ribavirin (50 μM) had no effect on the anti−HIV-1 activity of abacavir in cell culture.
Lamivudine: The antiviral activity of lamivudine against HIV-1 was assessed in a number of cell lines (including monocytes and fresh human peripheral blood lymphocytes) using standard susceptibility assays. EC50 values were in the range of 0.003 to 15 μM (1 μM = 0.23 mcg/mL). HIV-1 from therapy-naive subjects with no amino acid substitutions associated with resistance gave median EC50 values of 0.429 µM (range: 0.200 to 2.007 µM) from Virco (n = 92 baseline samples from COLA40263) and 2.35 µM (1.37 to 3.68 µM) from Monogram Biosciences (n = 135 baseline samples from ESS30009). The EC50 values of lamivudine against different HIV-1 clades (A-G) ranged from 0.001 to 0.120 µM, and against HIV-2 isolates from 0.003 to 0.120 μM in peripheral blood mononuclear cells. Ribavirin (50 μM) decreased the anti-HIV-1 activity of lamivudine by 3.5 fold in MT-4 cells.
Zidovudine: The antiviral activity of zidovudine against HIV-1 was assessed in a number of cell lines (including monocytes and fresh human peripheral blood lymphocytes). The EC50 and EC90 values for zidovudine were 0.01 to 0.49 µM (1 μM = 0.27 mcg/mL) and 0.1 to 9 μM, respectively. HIV-1 from therapy-naive subjects with no amino acid substitutions associated with resistance gave median EC50 values of 0.011 μM (range: 0.005 to 0.110 μM) from Virco (n = 92 baseline samples from COLA40263) and 0.0017 μM (0.006 to 0.0340 μM) from Monogram Biosciences (n = 135 baseline samples from ESS30009). The EC50 values of zidovudine against different HIV-1 clades (A-G) ranged from 0.00018 to 0.02 μM, and against HIV-2 isolates from 0.00049 to 0.004 μM. In cell culture drug combination studies, zidovudine demonstrates synergistic activity with the NRTIs abacavir, didanosine, lamivudine, and zalcitabine; the NNRTIs delavirdine and nevirapine; and the PIs indinavir, nelfinavir, ritonavir, and saquinavir; and additive activity with interferon alfa. Ribavirin has been found to inhibit the phosphorylation of zidovudine in cell culture.
Resistance:
HIV-1 isolates with reduced sensitivity to abacavir, lamivudine, or zidovudine have been selected in cell culture and were also obtained from patients treated with abacavir, lamivudine, and zidovudine, or the combination of lamivudine and zidovudine.
Abacavir: Genotypic analysis of isolates selected in cell culture and recovered from abacavir-treated patients demonstrated that amino acid substitutions K65R, L74V, Y115F, and M184V/I in HIV-1 RT contributed to abacavir resistance. In a study of subjects receiving abacavir once or twice daily in combination with lamivudine and efavirenz once daily, 39% (7/18) of the isolates from patients who experienced virologic failure in the abacavir once-daily arm had a >2.5-fold decrease in abacavir susceptibility with a median-fold decrease of 1.3 (range 0.5 to 11) compared with 29% (5/17) of the failure isolates in the twice-daily arm with a median-fold decrease of 0.92 (range 0.7 to 13).
Lamivudine: Genotypic analysis of isolates selected in cell culture and recovered from lamivudine-treated patients showed that the resistance was due to a specific amino acid substitution in the HIV-1 RT at codon 184 changing the methionine to either isoleucine or valine (M184V/I).
Zidovudine: Genotypic analyses of the isolates selected in cell culture and recovered from zidovudine-treated patients showed mutations in the HIV-1 RT gene resulting in 6 amino acid substitutions (M41L, D67N, K70R, L210W, T215Y or F, and K219Q) that confer zidovudine resistance. In general, higher levels of resistance were associated with greater number of mutations. In some patients harboring zidovudine-resistant virus at baseline, phenotypic sensitivity to zidovudine was restored by 12 weeks of treatment with lamivudine and zidovudine. Combination therapy with lamivudine plus zidovudine delayed the emergence of substitutions conferring resistance to zidovudine.
Cross-Resistance:
Cross-resistance has been observed among NRTIs.
Abacavir: Isolates containing abacavir resistance-associated amino acid substitutions, namely, K65R, L74V, Y115F, and M184V, exhibited cross-resistance to didanosine, emtricitabine, lamivudine, tenofovir, and zalcitabine in cell culture and in patients. The K65R substitution can confer resistance to abacavir, didanosine, emtricitabine, lamivudine, stavudine, tenofovir, and zalcitabine; the L74V substitution can confer resistance to abacavir, didanosine, and zalcitabine; and the M184V substitution can confer resistance to abacavir, didanosine, emtricitabine, lamivudine, and zalcitabine. An increasing number of thymidine analogue mutations (TAMs: M41L, D67N, K70R, L210W, T215Y/F, K219E/R/H/Q/N) is associated with a progressive reduction in abacavir susceptibility.
Lamivudine: Cross-resistance to abacavir, didanosine, tenofovir, and zalcitabine has been observed in some patients harboring lamivudine-resistant HIV-1 isolates. In some patients treated with zidovudine plus didanosine or zalcitabine, isolates resistant to multiple drugs, including lamivudine, have emerged (see under Zidovudine below). Cross-resistance between lamivudine and zidovudine has not been reported.
Zidovudine: In a study of 167 HIV-infected patients, isolates (n = 2) with multi-drug resistance to didanosine, lamivudine, stavudine, zalcitabine, and zidovudine were recovered from patients treated for ≥1 year with zidovudine plus didanosine or zidovudine plus zalcitabine. The pattern of resistance-associated amino acid substitutions with such combination therapies was different (A62V, V75I, F77L, F116Y, Q151M) from the pattern with zidovudine monotherapy, with the Q151M substitution being most commonly associated with multi-drug resistance. The substitution at codon 151 in combination with substitutions at 62, 75, 77, and 116 results in a virus with reduced susceptibility to didanosine, lamivudine, stavudine, zalcitabine, and zidovudine. TAMs are selected by zidovudine and confer cross-resistance to abacavir, didanosine, stavudine, tenofovir, and zalcitabine.
CLINICAL PHARMACOLOGY
Pharmacokinetics in Adults:
TRIZIVIR: In a single-dose, 3-way crossover bioavailability study of 1 TRIZIVIR Tablet versus 1 ZIAGEN Tablet (300 mg), 1 EPIVIR Tablet (150 mg), plus 1 RETROVIR Tablet (300 mg) administered simultaneously in healthy subjects (n = 24), there was no difference in the extent of absorption, as measured by the area under the plasma concentration-time curve (AUC) and maximal peak concentration (Cmax), of all 3 components. One TRIZIVIR Tablet was bioequivalent to 1 ZIAGEN Tablet (300 mg), 1 EPIVIR Tablet (150 mg), plus 1 RETROVIR Tablet (300 mg) following single-dose administration to fasting healthy subjects (n = 24).
Abacavir: Following oral administration, abacavir is rapidly absorbed and extensively distributed. Binding of abacavir to human plasma proteins is approximately 50%. Binding of abacavir to plasma proteins was independent of concentration. Total blood and plasma drug-related radioactivity concentrations are identical, demonstrating that abacavir readily distributes into erythrocytes. The primary routes of elimination of abacavir are metabolism by alcohol dehydrogenase to form the 5′-carboxylic acid and glucuronyl transferase to form the 5′-glucuronide.
Lamivudine: Following oral administration, lamivudine is rapidly absorbed and extensively distributed. Binding to plasma protein is low. Approximately 70% of an intravenous dose of lamivudine is recovered as unchanged drug in the urine. Metabolism of lamivudine is a minor route of elimination. In humans, the only known metabolite is the trans-sulfoxide metabolite (approximately 5% of an oral dose after 12 hours).
Zidovudine: Following oral administration, zidovudine is rapidly absorbed and extensively distributed. Binding to plasma protein is low. Zidovudine is eliminated primarily by hepatic metabolism. The major metabolite of zidovudine is 3′-azido-3′-deoxy-5′-O-β-D-glucopyranuronosylthymidine (GZDV). GZDV area under the curve (AUC) is about 3-fold greater than the zidovudine AUC. Urinary recovery of zidovudine and GZDV accounts for 14% and 74% of the dose following oral administration, respectively. A second metabolite, 3′-amino-3′-deoxythymidine (AMT), has been identified in plasma. The AMT AUC was one fifth of the zidovudine AUC.
In humans, abacavir, lamivudine, and zidovudine are not significantly metabolized by cytochrome P450 enzymes.
The pharmacokinetic properties of abacavir, lamivudine, and zidovudine in fasting patients are summarized in Table 1.
Table 1. Pharmacokinetic Parameters a for Abacavir, Lamivudine, and Zidovudine in Adults
Parameter |
Abacavir |
Lamivudine |
Zidovudine |
Oral bioavailability (%) |
86 ± 25 |
n = 6 |
86 ± 16 |
n = 12 |
64 ± 10 |
n = 5 |
Apparent volume of distribution (L/kg) |
0.86 ± 0.15 |
n = 6 |
1.3 ± 0.4 |
n = 20 |
1.6 ± 0.6 |
n = 8 |
Systemic clearance (L/hr/kg) |
0.80 ± 0.24 |
n = 6 |
0.33 ± 0.06 |
n = 20 |
1.6 ± 0.6 |
n = 6 |
Renal clearance (L/hr/kg) |
.007 ± .008 |
n = 6 |
0.22 ± 0.06 |
n = 20 |
0.34 ± 0.05 |
n = 9 |
Elimination half-life (hr)b |
1.45 ± 0.32 |
n = 20 |
5 to 7 |
0.5 to 3 |
a Data presented as mean ± standard deviation except where noted. |
b Approximate range. |
Effect of Food on Absorption of TRIZIVIR:
TRIZIVIR may be administered with or without food. Administration with food in a single-dose bioavailability study resulted in lower Cmax, similar to results observed previously for the reference formulations. The average [90% CI] decrease in abacavir, lamivudine, and zidovudine Cmax was 32% [24% to 38%], 18% [10% to 25%], and 28% [13% to 40%], respectively, when administered with a high-fat meal, compared with administration under fasted conditions. Administration of TRIZIVIR with food did not alter the extent of abacavir, lamivudine, and zidovudine absorption (AUC), as compared with administration under fasted conditions (n = 24).
Special Populations:
Impaired Renal Function: TRIZIVIR: Because lamivudine and zidovudine require dose adjustment in the presence of renal insufficiency, TRIZIVIR is not recommended for use in patients with creatinine clearance <50 mL/min (see PRECAUTIONS).
Impaired Hepatic Function: TRIZIVIR: A reduction in the daily dose of zidovudine may be necessary in patients with mild to moderate impaired hepatic function or liver cirrhosis. Abacavir is contraindicated in patients with moderate to severe hepatic impairment and dose reduction is required in patients with mild hepatic impairment. Because TRIZIVIR is a fixed-dose combination that cannot be adjusted for this patient population, TRIZIVIR is contraindicated for patients with impaired hepatic function.
Pregnancy: See PRECAUTIONS: Pregnancy.
Abacavir and Lamivudine: No data are available on the pharmacokinetics of abacavir or lamivudine during pregnancy.
Zidovudine: Zidovudine pharmacokinetics have been studied in a Phase 1 study of 8 women during the last trimester of pregnancy. As pregnancy progressed, there was no evidence of drug accumulation. The pharmacokinetics of zidovudine were similar to that of nonpregnant adults. Consistent with passive transmission of the drug across the placenta, zidovudine concentrations in neonatal plasma at birth were essentially equal to those in maternal plasma at delivery. Although data are limited, methadone maintenance therapy in 5 pregnant women did not appear to alter zidovudine pharmacokinetics. In a nonpregnant adult population, a potential for interaction has been identified (see CLINICAL PHARMACOLOGY: Drug Interactions).
Nursing Mothers: See PRECAUTIONS: Nursing Mothers.
Abacavir: No data are available on the pharmacokinetics of abacavir in nursing mothers.
Lamivudine: Samples of breast milk obtained from 20 mothers receiving lamivudine monotherapy (300 mg twice daily) or combination therapy (150 mg lamivudine twice daily and 300 mg zidovudine twice daily) had measurable concentrations of lamivudine.
Zidovudine: After administration of a single dose of 200 mg zidovudine to 13 HIV-infected women, the mean concentration of zidovudine was similar in human milk and serum.
Pediatric Patients: TRIZIVIR: TRIZIVIR is not intended for use in pediatric patients. TRIZIVIR should not be administered to adolescents who weigh less than 40 kg because it is a fixed-dose tablet that cannot be dose adjusted for this patient population (see PRECAUTIONS: Pediatric Use).
Geriatric Patients: The pharmacokinetics of abacavir, lamivudine, and zidovudine have not been studied in patients over 65 years of age.
Gender: Abacavir: A population pharmacokinetic analysis in HIV-1-infected male (n = 304) and female (n = 67) patients showed no gender differences in abacavir AUC normalized for lean body weight.
Lamivudine and Zidovudine: A pharmacokinetic study in healthy male (n = 12) and female (n = 12) subjects showed no gender differences in zidovudine exposure (AUC∞) or lamivudine (AUC∞) normalized for body weight.
Race: Abacavir: There are no significant differences between blacks and Caucasians in abacavir pharmacokinetics.
Lamivudine: There are no significant racial differences in lamivudine pharmacokinetics.
Zidovudine: The pharmacokinetics of zidovudine with respect to race have not been determined.
Drug Interactions:
See PRECAUTIONS: Drug Interactions. The drug interactions described are based on studies conducted with the individual nucleoside analogues. In humans, abacavir, lamivudine, and zidovudine are not significantly metabolized by cytochrome P450 enzymes; therefore, it is unlikely that clinically significant drug interactions will occur with drugs metabolized through these pathways.
Abacavir: Due to the common metabolic pathways of abacavir and zidovudine via glucuronyl transferase, 15 HIV-1-infected patients were enrolled in a crossover study eva luating single doses of abacavir (600 mg), lamivudine (150 mg), and zidovudine (300 mg) alone or in combination. Analysis showed no clinically relevant changes in the pharmacokinetics of abacavir with the addition of lamivudine or zidovudine or the combination of lamivudine and zidovudine. Lamivudine exposure (AUC decreased 15%) and zidovudine exposure (AUC increased 10%) did not show clinically relevant changes with concurrent abacavir.
In a study of 11 HIV-1-infected patients receiving methadone-maintenance therapy (40 mg and 90 mg daily), with 600 mg of ZIAGEN twice daily (twice the currently recommended dose), oral methadone clearance increased 22% (90% CI: 6% to 42%). This alteration will not result in a methadone dose modification in the majority of patients; however, an increased methadone dose may be required in a small number of patients.
Lamivudine and Zidovudine: No clinically significant alterations in lamivudine or zidovudine pharmacokinetics were observed in 12 asymptomatic HIV-1-infected adult patients given a single dose of zidovudine (200 mg) in combination with multiple doses of lamivudine (300 mg q 12 hr).
Table 2. Effect of Coadministered Drugs on Abacavir, Lamivudine, and Zidovudine AUC a Note: ROUTINE DOSE MODIFICATION OF ABACAVIR, LAMIVUDINE, AND ZIDOVUDINE IS NOT WARRANTED WITH COADMINISTRATION OF THE FOLLOWING DRUGS.
Drugs That May Alter Lamivudine Blood Concentrations |
Coadministered Drug and Dose |
Lamivudine Dose |
n |
Lamivudine Concentrations |
Concentration of Coadministered Drug |
AUC |
Variability |
Nelfinavir
750 mg q 8 hr
x 7 to 10 days |
single 150 mg |
11 |
↑10% |
95% CI:
1% to 20% |
↔ |
|