UNIRETIC(moexipril hydrochloride and hydrochlorothiazide tablet)
WARNING: FETAL TOXICITY
See full prescribing information for complete boxed warning.
-
When pregnancy is detected, discontinue uniretic® as soon as possible.
-
Drugs that act directly on the renin-angiotensin system can cause injury and death to the developing fetus. See Warnings: Fetal Toxicity
DESCRIPTION
uniretic® (moexipril hydrochloride/hydrochlorothiazide) is a combination of an angiotensin-converting enzyme (ACE) inhibitor, moexipril hydrochloride, and a diuretic, hydrochlorothiazide. Moexipril hydrochloride is a fine white to off-white powder. It is soluble (about 10% weight-to-volume) in distilled water at room temperature. It has the empirical formula C27H34N2O7•HCl and a molecular weight of 535.04. It is chemically described as [3S-[2[R*(R*)],3R*]]-2-[2-[[1-(Ethoxycarbonyl)-3-phenyl-propyl]amino]-1-oxopropyl]-1,2,3,4-tetrahydro-6,7-dimethoxy-3-isoquino-linecarboxylic acid, monohydrochloride. Moexipril hydrochloride is a non-sulfhydryl containing precursor of the active ACE inhibitor moexiprilat and its structural formula is:
Hydrochlorothiazide is a white, or practically white, crystalline powder. It is slightly soluble in water, freely soluble in sodium hydroxide solution, in n-butylamine and in dimethylformamide. Hydrochlorothiazide has the empirical formula C7H8ClN3O4S2 and a molecular weight of 297.75. It is chemically described as 2H-1,2,4-Benzothiadiazine-7-sulfonamide,6-chloro-3,4-dihydro-,1,1-dioxide. Hydrochlorothiazide is a thiazide diuretic and its structural formula is:
uniretic® is available for oral administration in three tablet strengths. The inactive ingredients in all strengths are lactose, magnesium oxide, crospovidone, magnesium stearate and gelatin. The film coating in all strengths contains hydroxypropyl cellulose, hypromellose, polyethylene glycol 6000, magnesium stearate and titanium dioxide. In addition, the film coating for uniretic® 7.5 mg / 12.5 mg and uniretic® 15 mg / 25 mg contains ferric oxide.
CLINICAL PHARMACOLOGY
Mechanism of Action
Moexipril Hydrochloride
Moexipril hydrochloride is a prodrug for moexiprilat, which inhibits ACE in humans and animals. The mechanism through which moexiprilat lowers blood pressure is believed to be primarily inhibition of ACE activity. ACE is a peptidyl dipeptidase that catalyzes the conversion of the inactive decapeptide angiotensin I to the vasoconstrictor substance angiotensin II. Angiotensin II is a potent peripheral vasoconstrictor that also stimulates aldosterone secretion by the adrenal cortex and provides negative feedback on renin secretion. ACE is identical to kininase II, an enzyme that degrades bradykinin, an endothelium-dependent vasodilator. Moexiprilat is about 1000 times as potent as moexipril in inhibiting ACE and kininase II. Inhibition of ACE results in decreased angiotensin II formation, leading to decreased vasoconstriction, increased plasma renin activity, and decreased aldosterone secretion. The latter results in diuresis and natriuresis and a small increase in serum potassium concentration (mean increases of about 0.25 mEq/L were seen when moexipril was used alone).
Whether increased levels of bradykinin, a potent vasodepressor peptide, play a role in the therapeutic effects of moexipril remains to be elucidated. Although the principal mechanism of moexipril in blood pressure reduction is believed to be through the renin-angiotensin-aldosterone system, ACE inhibitors have some effect on blood pressure even in apparent low-renin hypertension. As is the case with other ACE inhibitors, however, the antihypertensive effect of moexipril is smaller in black patients, a predominantly low-renin population, than in nonblack hypertensive patients. Although moexipril monotherapy is less effective in blacks than in nonblacks, the efficacy of combination therapy appears to be independent of race.
Hydrochlorothiazide
Hydrochlorothiazide is a thiazide diuretic and antihypertensive. Thiazides affect the distal renal tubular mechanisms of electrolyte reabsorption, directly increasing excretion of sodium and chloride in approximately equivalent amounts. Indirectly, the diuretic action of hydrochlorothiazide reduces plasma volume, with consequent increases in plasma renin activity, increases in aldosterone secretion, increases in urinary potassium loss, and decreases in serum potassium. The renin-aldosterone link is mediated by angiotensin, so coadministration of an ACE inhibitor tends to reverse the potassium loss associated with these diuretics. The mechanism of the antihypertensive effect of thiazides is unknown.
Pharmacokinetics
Moexipril-Hydrochlorothiazide
Following oral administration of uniretic®, the moexipril peak plasma concentration was reached within 0.8 hour and the peak plasma concentration of moexiprilat occurred 1.6 hours after administration. After reaching the peak plasma level (Cmax), moexiprilat plasma concentrations decreased biphasically. After administration of uniretic®, renal excretion of unchanged hydrochlorothiazide is about 60% in 24 hours. The pharmacokinetics of moexipril and hydrochlorothiazide after administration of uniretic® are not different, respectively, from the pharmacokinetics of moexipril and hydrochlorothiazide from immediate-release monotherapy formulations.
Moexipril Hydrochloride
Moexipril's antihypertensive activity is almost entirely due to its deesterified metabolite, moexiprilat. Bioavailability of oral moexipril is about 13% compared to intravenous (I.V.) moexipril (both measuring the metabolite moexiprilat), and is markedly affected by food, which reduces Cmax and AUC (see Absorption). Moexipril should therefore be taken in a fasting state. The time of peak plasma concentration (Tmax) of moexiprilat is about 1 ½ hours and elimination half-life (t½) is estimated at 2 to 9 hours in various studies, the variability reflecting a complex elimination pattern that is not simply exponential. Like all ACE inhibitors, moexiprilat has a prolonged terminal elimination phase, presumably reflecting slow release of drug bound to the ACE. Accumulation of moexiprilat with repeated dosing is minimal, about 30%, compatible with a functional elimination t½ of about 12 hours. Over the dose range of 7.5 to 30 mg, pharmacokinetics are approximately dose proportional.
Absorption
Moexipril is incompletely absorbed, with bioavailability as moexiprilat of about 13%. Bioavailability varies with formulation and food intake which reduces Cmax and AUC of moexiprilat by about 70% and 40% respectively after the ingestion of a low-fat breakfast or by 80% and 50% respectively after the ingestion of a high-fat breakfast.
Distribution
The clearance (CL) for moexipril is 441 mL/min and for moexiprilat 232 mL/min with a t½ of 1.3 and 9.8 hours, respectively. Moexiprilat is about 50% protein bound. The volume of distribution of moexiprilat is about 2.8 L/kg.
Metabolism and Excretion
Moexipril is relatively rapidly converted to its active metabolite moexiprilat, but persists longer than some other ACE inhibitor prodrugs, such that its t½ is over one hour and it has a significant AUC. Both moexipril and moexiprilat are converted to diketopiperazine derivatives and unidentified metabolites. After I.V. administration of moexipril, about 40% of the dose appears in urine as moexiprilat, about 26% as moexipril, with small amounts of the metabolites; about 20% of the I.V. dose appears in feces, principally as moexiprilat. After oral administration, only about 7% of the dose appears in urine as moexiprilat, about 1% as moexipril, with about 5% as other metabolites. Fifty-two percent of the dose is recovered in feces as moexiprilat and 1% as moexipril.
Special Populations
Decreased Renal Function
The effective elimination t½ and AUC of both moexipril and moexiprilat are increased with decreasing renal function. There is insufficient information available to characterize this relationship fully, but at creatinine clearances in the range of 10 to 40 mL/min, the t½ of moexiprilat is increased by a factor of 3 to 4.
Decreased Hepatic Function
In patients with mild to moderate cirrhosis given single 15 mg doses of moexipril, the Cmax of moexipril was increased by about 50% and the AUC increased by about 120%, while the Cmax for moexiprilat was decreased by about 50% and the AUC increased by almost 300%.
Elderly Patients
In elderly male subjects (65-80 years old) with clinically normal renal and hepatic function, the AUC and Cmax of moexiprilat are about 30% greater than in younger subjects
(19-42 years old).
Pharmacokinetic Interactions With Other Drugs
No clinically important pharmacokinetic interactions occurred when moexipril was administered concomitantly with hydrochlorothiazide, digoxin, or cimetidine.
Hydrochlorothiazide
Absorption
After oral administration, 60-80% of a single dose of hydrochlorothiazide is absorbed. The reported studies of food effects on hydrochlorothiazide absorption have been inconclusive. The absorption of hydrochlorothiazide is reported to be reduced by 50% in patients with congestive heart failure. Hydrochlorothiazide exhibits dose proportionality over the dose range of 12.5 to 75 mg.
Distribution
The apparent volume of distribution has been observed to vary between 1.5-4.2 L/kg. Hydrochlorothiazide accumulates in red blood cells, so that whole blood levels are higher than those measured in plasma. Equilibrium between whole blood levels and plasma levels is reached 4 hours after oral administration. Hydrochlorothiazide crosses the placental barrier. Hydrochlorothiazide has a protein binding of 21-24%.
Metabolism and Excretion
Hydrochlorothiazide is not metabolized. Hydrochlorothiazide is eliminated rapidly by the kidney. More than 60 percent of the oral dose is eliminated unchanged within 24 hours. When plasma levels have been followed for at least 24 hours, the plasma half-life has been observed to vary between 5.6 and 14.8 hours. The renal clearance has been observed to vary between 3.1-5.5 mL/min/kg.
Special Populations
Decreased Renal Function
In a study of patients with impaired renal function (mean creatinine clearance of 19 mL/min), the elimination half-life of hydrochlorothiazide was increased to 21 hours.
Pharmacokinetic Interactions With Other Drugs
Coadministration of propantheline or guanabenz increased the absorption of hydrochlorothiazide and coadministration of cholestyramine or colestipol decreased the absorption of hydrochlorothiazide.
Pharmacodynamics and Clinical Effect
Moexipril - Hydrochlorothiazide
In uniretic® clinical trials using moexipril doses of 3.75-30 mg and hydrochlorothiazide doses of 3.125-50 mg, the antihypertensive effects were sustained for at least 24 hours and they increased with increasing dose of either component. The extent of blood pressure reduction seen with uniretic® was approximately additive as compared to monotherapy of each component. The antihypertensive effects of uniretic® continue during therapy for up to 24 months. The effectiveness of uniretic® was not significantly influenced by patient age or gender. Although moexipril monotherapy is less effective in blacks than in nonblacks, the efficacy of uniretic® appears to be independent of race.
By blocking the renin-angiotensin-aldosterone axis, administration of moexipril tends to reduce the potassium loss associated with hydrochlorothiazide. In uniretic® controlled clinical trials, the average change in serum potassium was near zero in subjects who received 3.75 mg / 6.25 mg or 7.5 mg / 12.5 mg, but subjects who received 15 mg / 12.5 mg or 15 mg / 25 mg experienced a mild decrease in serum potassium, similar to that experienced by subjects who received the same dose of hydrochlorothiazide monotherapy.
Moexipril Hydrochloride
Single and multiple doses of 15 mg or more of moexipril give sustained inhibition of plasma ACE activity of 80-90%, beginning within 2 hours and lasting 24 hours (80%).
In controlled trials, the peak effects of orally administered moexipril increased with the dose administered over a dose range of 7.5 to 60 mg, given once a day. Antihypertensive effects were first detectable about 1 hour after dosing, with a peak effect between 3 and 6 hours after dosing. Just before dosing (i.e., at trough), the antihypertensive effects were less prominently related to dose and the antihypertensive effect tended to diminish during the 24-hour dosing interval when the drug was administered once a day.
In multiple-dose studies in the dose range of 7.5 to 30 mg once daily, moexipril lowered sitting blood pressure at trough by 4-11/3-6 mmHg more than placebo, a tendency toward increased response with higher doses. These effects are typical of ACE inhibitors; there are no trials of adequate size comparing moexipril with other antihypertensive agents.
Higher doses of moexipril generally leave a greater fraction of the peak blood pressure effect still present at trough. During dose titration, any decision as to the adequacy of a dosing regimen should be based on trough blood pressure measurements. If diastolic blood pressure control is not adequate at the end of the dosing interval, the dose can be increased or given as a divided (BID) regimen.
During chronic therapy, the antihypertensive effect of any dose of moexipril is generally evident within 2 weeks of treatment, with maximal reduction after 4 weeks. The antihypertensive effects of moexipril have been proven to continue during therapy for up to 24 months.
Moexipril, like other ACE inhibitors, is less effective in decreasing trough blood pressures in blacks than in nonblacks. Placebo-corrected trough group diastolic blood pressure effects in blacks in the proposed dose range were +1 to -3 mmHg compared with responses in nonblacks of -4 to -6 mmHg.
The effectiveness of moexipril was not significantly influenced by patient age, gender, or weight. Moexipril has been shown to have antihypertensive activity in both pre- and postmenopausal women who have participated in placebo-controlled clinical trials.
INDICATIONS AND USAGE
uniretic® is indicated for treatment of patients with hypertension. This fixed combination is not indicated for the initial therapy of hypertension (see DOSAGE AND ADMINISTRATION).
In using uniretic®, consideration should be given to the fact that another ACE inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen-vascular disease. Available data are insufficient to show that uniretic® does not have a similar risk (see WARNINGS, Neutropenia/Agranulocytosis). In addition, ACE inhibitors, for which adequate data are available, cause a higher rate of angioedema in black than in nonblack patients (see WARNINGS, Angioedema).
CONTRAINDICATIONS
uniretic® is contraindicated in patients who are hypersensitive to any component of this product and in patients with a history of angioedema related to previous treatment with an ACE inhibitor. Because of the hydrochlorothiazide component, this product is contraindicated in patients with anuria or hypersensitivity to other sulfonamide-derived drugs. Hypersensitivity reactions are more likely to occur in patients with a history of allergy or bronchial asthma.
WARNINGS
Anaphylactoid and Possibly Related Reactions
Presumably because angiotensin-converting enzyme inhibitors affect the metabolism of eicosanoids and polypeptides, including endogenous bradykinin, patients receiving ACE inhibitors, including uniretic®, may be subject to a variety of adverse reactions, some of them serious.
Head and Neck Angioedema
Angioedema involving the face, extremities, lips, tongue, glottis, and/or larynx has been reported in patients treated with ACE inhibitors, including moexipril. Symptoms suggestive of angioedema or facial edema occurred in <0.5% of moexipril-treated patients in placebo-controlled trials. None of the cases were considered life-threatening and all resolved either without treatment or with medication (antihistamines or glucocorticoids). One patient treated with hydrochlorothiazide alone experienced laryngeal edema. No instances of angioedema were reported in placebo-treated patients.
In cases of angioedema, treatment with uniretic® should be promptly discontinued and the patient carefully observed until the swelling disappears. In instances where swelling has been confined to the face and lips, the condition has generally resolved without treatment, although antihistamines have been useful in relieving symptoms.
Angioedema associated with involvement of the tongue, glottis, or larynx may be fatal due to airway obstruction. Appropriate therapy, e.g., subcutaneous epinephrine solution 1:1000 (0.3 to 0.5 mL) and/or measures to ensure a patent airway, should be promptly provided (see ADVERSE REACTIONS).
Intestinal Angioedema
Intestinal angioedema has been reported in patients treated with ACE inhibitors. These patients presented with abdominal pain (with or without nausea or vomiting); in some cases there was no prior history of facial angioedema and C-1 esterase levels were normal. The angioedema was diagnosed by procedures including abdominal CT scan or ultrasound, or at surgery, and symptoms resolved after stopping the ACE inhibitor. Intestinal angioedema should be included in the differential diagnosis of patients on ACE inhibitors presenting with abdominal pain.
Anaphylactoid Reactions During Desensitization
Two patients undergoing desensitizing treatment with hymenoptera venom while receiving ACE inhibitors sustained life-threatening anaphylactoid reactions. In the same patients, these reactions did not occur when ACE inhibitors were temporarily withheld, but they reappeared when the ACE inhibitors were inadvertently readministered.
Anaphylactoid Reactions During Membrane Exposure
Anaphylactoid reactions have been reported in patients dialyzed with high-flux membranes and treated concomitantly with an ACE inhibitor. Anaphylactoid reactions have also been reported in patients undergoing low-density lipoprotein apheresis with dextran sulfate absorption.
Hypotension
uniretic® can cause symptomatic hypotension, although, as with other ACE inhibitors, this is unusual in uncomplicated hypertensive patients treated with uniretic® alone. Symptomatic hypotension is most likely to occur in patients who have been salt- and/or volume-depleted as a result of prolonged diuretic therapy, dietary salt restriction, dialysis, diarrhea, or vomiting. Volume- and/or salt-depletion should be corrected before initiating therapy with uniretic® (see ADVERSE REACTIONS).
The thiazide component of uniretic® may potentiate the action of other antihypertensive drugs, especially ganglionic or peripheral adrenergic-blocking drugs. The antihypertensive effects of the thiazide component may also be enhanced in the postsympathectomy patient.
In patients with congestive heart failure, with or without associated renal insufficiency, ACE inhibitor therapy may cause excessive hypotension, which may be associated with oliguria or progressive azotemia, and rarely, with acute renal failure and death. In these patients, uniretic® therapy should be started under close medical supervision, and patients should be followed closely for the first two weeks of treatment and whenever the dose of uniretic® is increased. Care in avoiding hypotension should also be taken in patients with ischemic heart disease, aortic stenosis, or cerebrovascular disease, in whom an excessive decrease in blood pressure could result in a myocardial infarction or a cerebrovascular accident.
If hypotension occurs, the patient should be placed in a supine position and, if necessary, treated with an intravenous infusion of normal saline. uniretic® treatment usually can be continued following restoration of blood pressure and volume.
Impaired Renal Function
uniretic® should be used with caution in patients with severe renal disease. Thiazide diuretics may precipitate azotemia in such patients and the effects of repeated dosing may be cumulative.
As a consequence of inhibition of the renin-angiotensin-aldosterone system, changes in renal function may be anticipated in susceptible individuals. There is no clinical experience of uniretic® in the treatment of hypertension in patients with renal failure.
Some hypertensive patients with no apparent preexisting renal vascular disease have developed increases in blood urea nitrogen and serum creatinine, usually minor and transient, especially when moexipril has been given concomitantly with a thiazide diuretic. This is more likely to occur in patients with preexisting renal impairment. There may be a need for dose adjustment of uniretic®. eva luation of hypertensive patients should always include assessment of renal function (see DOSAGE AND ADMINISTRATION).
In hypertensive patients with severe congestive heart failure, whose renal function may depend on the activity of the renin-angiotensin-aldosterone system, treatment with ACE inhibitors, including moexipril, may be associated with oliguria and/or progressive azotemia and, rarely, acute renal failure and/or death.
In hypertensive patients with unilateral or bilateral renal artery stenosis, increases in blood urea nitrogen and serum creatinine have been observed in some patients following ACE inhibitor therapy. These increases were almost always reversible upon discontinuation of the ACE inhibitor and/or diuretic therapy. In such patients, renal function should be monitored during the first few weeks of therapy.
Neutropenia/Agranulocytosis
Another ACE inhibitor, captopril, has been shown to cause agranulocytosis and bone marrow depression, rarely in patients with uncomplicated hypertension, but more frequently in hypertensive patients with renal impairment, especially if they also have a collagen-vascular disease such as systemic lupus erythematosus or scleroderma. Although there were no instances of severe neutropenia (absolute neutrophil count <500/mm3) among patients given moexipril, as with other ACE inhibitors, monitoring of white blood cell counts should be considered for patients who have collagen-vascular disease, especially if the disease is associated with impaired renal function. Available data from clinical trials of moexipril are insufficient to show that moexipril does not cause agranulocytosis at rates similar to captopril.
Fetal Toxicity
Pregnancy category D
Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydraminios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse events include skull hypoplasia, anuria, hypotension, renal failure and death. When pregnancy is detected, discontinue uniretic® as soon as possible. These adverse outcomes are usually associated with use of these drugs in the second and third trimester of pregnancy. Most epidemiologic studies examining fetal abnormalities after exposure to antihypertensive use in the first trimester have not distinguished drugs affecting the renin-angiotensin system from other antihypertensive agents. Appropriate management of maternal hypertension during pregnancy is important to optimize outcomes for both mother and fetus.
In the unusual case that there is no appropriate alternative to therapy with drugs affecting the renin-angiotensin system for a particular patient, apprise the mother of the potential risk to the fetus. Perform serial ultrasound examinations to assess the intra-amniotic environment. If oligohydramnios is observed, discontinue uniretic, unless it is considered lifesaving for the mother. Fetal testing may be appropriate, based on the week of pregnancy. Patients and physicians should be aware, however, that oligohydramnios may not appear until after the fetus has sustained irreversible injury. Closely observe infants with histories of in utero exposure to uniretic® for hypotension, oliguria, and hyperkalemia. (see PRECAUTIONS, Pediatric Use)
Intrauterine exposure to thiazide diuretics is associated with fetal or neonatal jaundice, thrombocytopenia, and possibly other adverse reactions that have occurred in adults.
Reproduction studies with the combination of moexipril hydrochloride and hydrochlorothiazide (ratio 7.5:12.5) indicated that the combination possessed no teratogenic properties up to the lethal dose of 800 mg/kg/day in rats and up to the maternotoxic dose of 160 mg/kg/day in rabbits.
Hepatic Failure
Rarely, ACE inhibitors have been associated with a syndrome that starts with cholestatic jaundice and progresses to fulminant hepatic necrosis and sometimes death. The mechanism of this syndrome is not understood. Patients receiving ACE inhibitors who develop jaundice or marked elevations of hepatic enzymes should discontinue the ACE Inhibitor and receive appropriate medical follow-up.
Impaired Hepatic Function
uniretic® should be used with caution in patients with impaired hepatic function or progressive liver disease, since minor alterations of fluid and electrolyte balance may precipitate hepatic coma. In patients with mild to m |
|