ARALAST NP functions in the lungs to inhibit serine proteases such as neutrophil elastase (NE), which is capable of degrading protein components of the alveolar walls and which is chronically present in the lung. In the normal lung, α1–PI is thought to provide more than 90% of the anti–NE protection in the lower respiratory tract.3,4
α1–PI deficiency is an autosomal, co-dominant, hereditary disorder characterized by low serum and lung levels of α1–PI.1,3,5,6 Severe forms of the deficiency are frequently associated with slowly progressive, moderate-to-severe panacinar emphysema that most often manifests in the third to fourth decades of life, resulting in a significantly lower life expectancy.1,3,4,6,7 However, an unknown percentage of individuals with severe α1–PI deficiency are not diagnosed with or may never develop clinically evident emphysema during their lifetimes. Individuals with α1–PI deficiency have little protection against NE released by a chronic, low–level of neutrophils in their lower respiratory tract, resulting in a protease:protease inhibitor imbalance in the lung.3,8 The emphysema associated with severe α1–PI deficiency is typically worse in the lower lung zones.5 It is believed to develop because there are insufficient amounts of α1–PI in the lower respiratory tract to inhibit NE. This imbalance allows relatively unopposed destruction of the connective tissue framework of the lung parenchyma.8
There are a large number of phenotypic variants of this disorder.1,3,4 Individuals with the PiZZ variant typically have serum α1–PI levels less than 35% of the average normal level.1,5 Individuals with the Pi(null)(null) variant have undetectable α1–PI protein in their serum.1,3 Individuals with these low serum α1-PI levels, i.e., less than 11 µM, have an increased risk of developing emphysema over their lifetimes. In addition, PiSZ individuals, whose serum α1-PI levels range from approximately 9 to 23 μΜ14, are considered to have moderately increased risk for developing emphysema, regardless of whether their serum α1-PI levels are above or below 11 μΜ. Two Registry studies have shown 54% and 72% of α1-PI deficient individuals had emphysema and pulmonary symptoms such as cough, phlegm, wheeze, breathlessness, and chest colds, respectively.9,10 The risk of accelerated development and progression of emphysema in individuals with severe α1–PI deficiency is higher in smokers than in ex-smokers or non-smokers.3
Not all individuals with severe genetic variants of α1-PI deficiency have emphysema. Augmentation therapy with Alpha1-Proteinase Inhibitor (Human) is indicated only in patients with congenital α1-PI deficiency who have clinically evident emphysema.
Augmenting the levels of functional α1-proteinase inhibitor by intravenous infusion is an approach to therapy for patients with α1-PI deficiency. However, the efficacy of augmentation therapy in affecting the progression of emphysema has not been demonstrated in randomized, controlled clinical trials. The intended theoretical goal is to provide protection to the lower respiratory tract by correcting the imbalance between neutrophil elastase and protease inhibitors. Whether augmentation therapy with ARALAST NP actually protects the lower respiratory tract from progressive emphysematous changes has not been eva luated. Although the maintenance of blood serum levels of α1-PI (antigenically measured) above 11 µM has been historically postulated to provide therapeutically relevant anti-neutrophil elastase protection, this has not been proven. Individuals with severe α1-PI deficiency have been shown to have increased neutrophil and neutrophil elastase concentrations in lung epithelial lining fluid compared to normal PiMM individuals, and some PiSZ individuals with α1-PI above 11 µM have emphysema attributed to α1-PI deficiency. These observations underscore the uncertainty regarding the appropriate therapeutic target serum level of α1-PI during augmentation therapy. The clinical benefit of the increased blood levels of Alpha1-Proteinase Inhibitor at the recommended dose has not been established.
The clinical efficacy of ARALAST NP in influencing the course of pulmonary emphysema or the frequency, duration, or severity of pulmonary exacerbations has not been demonstrated in randomized, controlled clinical trials.
Pharmacokinetics
The pharmacokinetics of ARALAST NP were compared with ARALAST in a multicenter, single-dose, randomized, double-blind, crossover clinical study (Study 460501). Twenty-five subjects with congenital α1-PI deficiency received a single intravenous (IV) infusion of 60 mg/kg ARALAST NP or ARALAST. The 25 subjects in this study were between 20 and 75 years old, with a median age of 59. Plasma α1-PI concentrations were measured using an enzyme linked immunosorbent assay (ELISA). Figure 1 shows that the mean ± standard deviation (SD) plasma α1-PI concentration-time profiles after a single IV infusion of ARALAST NP and ARALAST at 60 mg/kg were comparable. Table 2 summarizes the pharmacokinetic parameters of ARALAST NP and ARALAST. The 90% confidence intervals for Cmax and AUC 0-inf/dose were well within the pre-defined acceptance limits of 80 to 125%.
A clinical study (ATC 97-01) was conducted to compare ARALAST to a commercially available preparation of α1–PI (Prolastin®
以下是“全球医药”详细资料 |
|
|