Rx only
Anticoagulant
WARNING: BLEEDING RISK
Warfarin sodium can cause major or fatal bleeding. Bleeding is more likely to occur during the starting period and with a higher dose (resulting in a higher INR). Risk factors for bleeding include high intensity of anticoagulation (INR >4.0), age ≥65, highly variable INRs, history of gastrointestinal bleeding, hypertension, cerebrovascular disease, serious heart disease, anemia, malignancy, trauma, renal insufficiency, concomitant drugs (see PRECAUTIONS), and long duration of warfarin therapy. Regular monitoring of INR should be performed on all treated patients. Those at high risk of bleeding may benefit from more frequent INR monitoring, careful dose adjustment to desired INR, and a shorter duration of therapy. Patients should be instructed about prevention measures to minimize risk of bleeding and to report immediately to physicians signs and symptoms of bleeding (see PRECAUTIONS: Information for Patients).
DESCRIPTION
Crystalline warfarin sodium is an anticoagulant which acts by inhibiting vitamin K-dependent coagulation factors. Chemically, it is 3-(α-acetonylbenzyl)-4-hydroxycoumarin sodium salt and is a racemic mixture of the R- and S-enantiomers. Crystalline warfarin sodium is an isopropanol clathrate. The crystallization of warfarin sodium virtually eliminates trace impurities present in amorphous warfarin. Its empirical formula is C19H15NaO4, and its structural formula may be represented by the following:
Crystalline warfarin sodium occurs as a white, odorless, crystalline powder, is discolored by light and is very soluble in water; freely soluble in alcohol; very slightly soluble in chloroform and in ether.
Warfarin Sodium Tablets, USP for oral use also contain:
All strengths: |
Anhydrous lactose, corn starch and magnesium stearate |
1 mg: |
D&C red #6 Barium Lake. |
2 mg: |
FD&C blue #2 Aluminum Lake, FD&C red #40 Aluminum Lake. |
2.5 mg: |
FD&C blue #2 Aluminum Lake, D&C yellow #10 Aluminum Lake. |
3 mg: |
FD&C blue #2 Aluminum Lake, FD&C red #40 Aluminum Lake, D&C yellow #10 Aluminum Lake. |
4 mg: |
FD&C blue #1 Aluminum Lake. |
5 mg: |
D&C yellow #10 Aluminum Lake, D&C red #6 Barium Lake. |
6 mg: |
D&C yellow #10 Aluminum Lake, FD&C blue #2 Aluminum Lake. |
7.5 mg: |
D&C yellow #10 Aluminum Lake. |
10 mg: |
Dye Free |
CLINICAL PHARMACOLOGY
Warfarin sodium tablets, USP and other coumarin anticoagulants act by inhibiting the synthesis of vitamin K dependent clotting factors, which include Factors II, VII, IX and X, and the anticoagulant proteins C and S. Half-lives of these clotting factors are as follows: Factor II - 60 hours, VII - 4-6 hours, IX - 24 hours, and X - 48-72 hours. The half-lives of proteins C and S are approximately 8 hours and 30 hours, respectively. The resultant in vivo effect is a sequential depression of Factor VII, Protein C, Factor IX, Protein S, and Factor X and II activities. Vitamin K is an essential cofactor for the post ribosomal synthesis of the vitamin K dependent clotting factors. The vitamin promotes the biosynthesis of γ-carboxyglutamic acid residues in the proteins which are essential for biological activity.
Mechanism of Action
Warfarin is thought to interfere with clotting factor synthesis by inhibition of the C1 subunit of the vitamin K epoxide reductase (VKORC1) enzyme complex, thereby reducing the regeneration of vitamin K1 epoxide. The degree of depression is dependent upon the dosage administered and, in part, by the patient's VKORC1 genotype. Therapeutic doses of warfarin decrease the total amount of the active form of each vitamin K dependent clotting factor made by the liver by approximately 30% to 50%.
An anticoagulation effect generally occurs within 24 hours after drug administration. However, peak anticoagulant effect may be delayed 72 to 96 hours. The duration of action of a single dose of racemic warfarin is 2 to 5 days. The effects of warfarin sodium tablets, USP may become more pronounced as effects of daily maintenance doses overlap. Anticoagulants have no direct effect on an established thrombus, nor do they reverse ischemic tissue damage. However, once a thrombus has occurred, the goal of anticoagulant treatment is to prevent further extension of the formed clot and prevent secondary thromboembolic complications which may result in serious and possibly fatal sequelae.
Pharmacokinetics
Warfarin sodium tablets, USP is a racemic mixture of the R- and S-enantiomers. The S-enantiomer exhibits 2-5 times more anticoagulant activity than the R-enantiomer in humans, but generally has a more rapid clearance.
Absorption
Warfarin sodium tablets, USP is essentially completely absorbed after oral administration with peak concentration generally attained within the first 4 hours.
Distribution
There are no differences in the apparent volumes of distribution after intravenous and oral administration of single doses of warfarin solution. Warfarin distributes into a relatively small apparent volume of distribution of about 0.14 liter/kg. A distribution phase lasting 6 to 12 hours is distinguishable after rapid intravenous or oral administration of an aqueous solution. Using a one compartment model, and assuming complete bioavailability, estimates of the volumes of distribution of R- and S-warfarin are similar to each other and to that of the racemate. Concentrations in fetal plasma approach the maternal values, but warfarin has not been found in human milk (see WARNINGS - Lactation). Approximately 99% of the drug is bound to plasma proteins.
Metabolism
The elimination of warfarin is almost entirely by metabolism. Warfarin sodium tablets, USP is stereoselectively metabolized by hepatic microsomal enzymes (cytochrome P-450) to inactive hydroxylated metabolites (predominant route) and by reductases to reduced metabolites (warfarin alcohols). The warfarin alcohols have minimal anticoagulant activity. The metabolites are principally excreted into the urine; and to a lesser extent into the bile. The metabolites of warfarin that have been identified include dehydrowarfarin, two diastereoisomer alcohols, 4'-, 6-, 7-, 8- and 10-hydroxywarfarin. The cytochrome P-450 isozymes involved in the metabolism of warfarin include 2C9, 2C19, 2C8, 2C18, 1A2, and 3A4. 2C9 is likely to be the principal form of human liver P-450 which modulates the in vivo anticoagulant activity of warfarin.
The S-enantiomer of warfarin is mainly metabolized to 7-hydroxywarfarin by CYP2C9, a polymorphic enzyme. The variant alleles CYP2C9*2 and CYP2C9*3 result in decreased in vitro CYP2C9 enzymatic 7-hydroxylation of S-warfarin. The frequencies of these alleles in Caucasians are approximately 11% and 7% for CYP2C9*2 and CYP2C9*3, respectively1. Patients with one or more of these variant CYP2C9 alleles have decreased S-warfarin clearance (Table 1).2
Table 1. Relationship Between S-Warfarin Clearance and CYP2C9 Genotype in Caucasian Patients
CYP2C9 Genotype |
N |
S-Warfarin Clearance/Lean Body Weight (mL/min/kg) Mean (SD)a |
aSD=standard deviation.
bp<0.001. Pairwise comparisons indicated significant differences among all 3 genotypes. |
*1/*1 |
118 |
0.065 (0.025)b |
*1/*2 or *1/*3 |
59 |
0.041 (0.021)b |
*2/*2, *2/*3, or *3/*3 |
11 |
0.020 (0.011)b |
Total |
188 |
|
Other CYP2C9 alleles associated with reduced enzymatic activity occur at lower frequencies, including *5, *6, and *11 alleles in populations of African ancestry and *5, *9 and *11 alleles in Caucasians.
Pharmacogenomics
A meta-analysis of 9 qualified studies including 2775 patients (99% Caucasian) was performed to examine the clinical outcomes associated with CYP2C9 gene variants in warfarin-treated patients.3 In this meta-analysis, 3 studies assessed bleeding risks and 8 studies assessed daily dose requirements. The analysis suggested an increased bleeding risk for patients carrying either the CYP2C9*2 or CYP2C9*3 alleles. Patients carrying at least one copy of the CYP2C9*2 allele required a mean daily warfarin dose that was 17% less than the mean daily dose for patients homozygous for the CYP2C9*1 allele. For patients carrying at least one copy of the CYP2C9*3 allele, the mean daily warfarin dose was 37% less than the mean daily dose for patients homozygous for the CYP2C9*1 allele.
In an observational study, the risk of achieving INR >3 during the first 3 weeks of warfarin therapy was determined in 219 Swedish patients retrospectively grouped by CYP2C9 genotype. The relative risk of over anticoagulation as measured by INR >3 during the first 2 weeks of therapy was approximately doubled for those patients classified as *2 or *3 compared to patients who were homozygous for the *1 allele.4
Warfarin reduces the regeneration of vitamin K from vitamin K epoxide in the vitamin K cycle, through inhibition of vitamin K epoxide reductase (VKOR), a multiprotein enzyme complex. Certain single nucleotide polymorphisms in the VKORC1 gene (especially the –1639G>A allele) have been associated with lower dose requirements for warfarin. In 201 Caucasian patients treated with stable warfarin doses, genetic variations in the VKORC1 gene were associated with lower warfarin doses. In this study, about 30% of the variance in warfarin dose could be attributed to variations in the VKORC1 gene alone; about 40% of the variance in warfarin dose could be attributed to variations in VKORC1 and CYP2C9 genes combined. About 55% of the variability in warfarin dose could be explained by the combination of VKORC1 and CYP2C9 genotypes, age, height, body weight, interacting drugs, and indication for warfarin therapy in Caucasian patients.5 Similar observations have been reported in Asian patients.6,7
Excretion
The terminal half-life of warfarin after a single dose is approximately one week; however, the effective half-life ranges from 20 to 60 hours, with a mean of about 40 hours. The clearance of R-warfarin is generally half that of S-warfarin, thus as the volumes of distribution are similar, the half-life of R-warfarin is longer than that of S-warfarin. The half-life of R-warfarin ranges from 37 to 89 hours, while that of S-warfarin ranges from 21 to 43 hours. Studies with radiolabeled drug have demonstrated that up to 92% of the orally administered dose is recovered in urine. Very little warfarin is excreted unchanged in urine. Urinary excretion is in the form of metabolites.
Elderly
Patients 60 years or older appear to exhibit greater than expected PT/INR response to the anticoagulant effects of warfarin. The cause of the increased sensitivity to the anticoagulant effects of warfarin in this age group is unknown. This increased anticoagulant effect from warfarin may be due to a combination of pharmacokinetic and pharmacodynamic factors. Racemic warfarin clearance may be unchanged or reduced with increasing age. Limited information suggests there is no difference in the clearance of S-warfarin in the elderly versus young subjects. However, there may be a slight decrease in the clearance of R-warfarin in the elderly as compared to the young. Therefore, as patient age increases, a lower dose of warfarin is usually required to produce a therapeutic level of anticoagulation.
Asians
Asian patients may require lower initiation and maintenance doses of warfarin. One non-controlled study conducted in 151 Chinese outpatients reported a mean daily warfarin requirement of 3.3±1.4 mg to achieve an INR of 2 to 2.5. These patients were stabilized on warfarin for various indications. Patient age was the most important determinant of warfarin requirement in Chinese patients with a progressively lower warfarin requirement with increasing age.
Renal Dysfunction
Renal clearance is considered to be a minor determinant of anticoagulant response to warfarin. No dosage adjustment is necessary for patients with renal failure.
Hepatic Dysfunction
Hepatic dysfunction can potentiate the response to warfarin through impaired synthesis of clotting factors and decreased metabolism of warfarin.
The administration of warfarin via the intravenous (IV) route should provide the patient with the same concentration of an equal oral dose, but maximum plasma concentration will be reached earlier. However, the full anticoagulant effect of a dose of warfarin may not be achieved until 72-96 hours after dosing, indicating that the administration of IV warfarin should not provide any increased biological effect or earlier onset of action.
CLINICAL TRIALS
Atrial Fibrillation (AF)
In five prospective randomized controlled clinical trials involving 3711 patients with non-rheumatic AF, warfarin significantly reduced the risk of systemic thromboembolism including stroke (See Table 2). The risk reduction ranged from 60% to 86% in all except one trial (CAFA: 45%) which stopped early due to published positive results from two of these trials. The incidence of major bleeding in these trials ranged from 0.6 to 2.7% (see table 2). Meta-analysis findings of these studies revealed that the effects of warfarin in reducing thromboembolic events including stroke were similar at either moderately high INR (2.0-4.5) or low INR (1.4-3.0). There was a significant reduction in minor bleeds at the low INR. Similar data from clinical studies in valvular atrial fibrillation patients are not available.
TABLE 2 CLINICAL STUDIES OF WARFARIN IN NON-RHEUMATIC AF PATIENTS*
Study |
N |
|
Thromboembolism |
% Major Bleeding |
Warfarin Treated Patients |
Control Patients |
PT Ratio |
INR |
% Risk Reduction |
p-value |
Warfarin Treated Patients |
Control Patients |
* All study results of warfarin vs. control are based on intention-to-treat analysis and include ischemic stroke and systemic thromboembolism, excluding hemorrhage, and transient ischemic attacks. |
AFASAK |
335 |
336 |
1.5-2.0 |
2.8-4.2 |
60 |
0.027 |
0.6 |
0.0 |
SPAF |
210 |
211 |
1.3-1.8 |
2.0-4.5 |
67 |
0.01 |
1.9 |
1.9 |
BAATAF |
212 |
208 |
1.2-1.5 |
1.5-2.7 |
86 |
<0.05 |
0.9 |
0.5 |
CAFA |
187 |
191 |
1.3-1.6 |
2.0-3.0 |
45 |
0.25 |
2.7 |
0.5 |
SPINAF |
260 |
265 |
1.2-1.5 |
1.4-2.8 |
79 |
0.001 |
2.3 |
1.5 |
Myocardial Infarction
WARIS (The Warfarin Re-Infarction Study) was a double-blind, randomized study of 1214 patients 2 to 4 weeks post-infarction treated with warfarin to a target INR of 2.8 to 4.8. [But note that a lower INR was achieved and increased bleeding was associated with INR's above 4.0; (see DOSAGE AND ADMINISTRATION.)] The primary endpoint was a combination of total mortality and recurrent infarction. A secondary endpoint of cerebrovascular events was assessed. Mean follow-up of the patients was 37 months. The results for each endpoint separately, including an analysis of vascular death, are provided in the following table:
TABLE 3
Event |
Warfarin
(N=607) |
Placebo
(N=607) |
RR (95%CI) |
% Risk Reduction
(p-value) |
RR=Relative risk; Risk reduction=(I-RR); CI=Confidence Interval; MI=Myocardial Infarction; py=patient years |
Total Patient Years of Follow-up |
2018 |
1944 |
|
|
Total Mortality |
94 (4.7/100 py) |
123 (6.3/100 py) |
0.76 (0.60, 0.97) |
24 (p=0.030) |
Vascular Death |
82 (4.1/100 py) |
105 (5.4/100 py) |
0.78 (0.60,1.02) |
22 (p=0.068) |
Recurrent MI |
82 (4.1/100 py) |
124 (6.4/100 py) |
0.66 (0.51, 0.85) |
34 (p=0.001) |
Cerebrovascular Event |
20 (1.0/100 py) |
44 (2.3/100 py) |
0.46 (0.28, 0.75) |
54 (p=0.002) |
WARIS II (The Warfarin, Aspirin, Re-Infarction Study) was an open-label randomized study of 3630 patients hospitalized for acute myocardial infarction treated with warfarin target INR 2.8 to 4.2, aspirin 160 mg/day, or warfarin target INR 2.0 to 2.5 plus aspirin 75 mg/day prior to hospital discharge. There were approximately four times as many major bleeding episodes in the two groups receiving warfarin than in the group receiving aspirin alone. Major bleeding episodes were not more frequent among patients receiving aspirin plus warfarin than among those receiving warfarin alone, but the incidence of minor bleeding episodes was higher in the combined therapy group. The primary endpoint was a composite of death, nonfatal reinfarction, or thromboembolic stroke. The mean duration of observation was approximately 4 years. The results for WARIS II are provided in the following table8:
TABLE 4 WARIS II - DISTRIBUTION OF SEPARATE EVENTS ACCORDING TO TREATMENT GROUP
Event |
Aspirin
(N=1206) |
Warfarin
(N=1216) |
Aspirin plus Warfarin
(N=1208) |
Rate Ratio
(95% CI)* |
p-value |
* CI denotes confidence interval.
a The rate ratio is for aspirin plus warfarin as compared with aspirin.
b The rate ratio is for warfarin as compared with aspirin.
c Major bleeding episodes were defined as nonfatal cerebral hemorrhage or bleeding necessitating surgical intervention or blood transfusion.
d Minor bleeding episodes were defined as non-cerebral hemorrhage not necessitating surgical intervention or blood transfusion.
ND =not determined. |
|
No. of Events |
|
Reinfarction |
117 |
90 |
69 |
0.56 (0.41-0.78)a
0.74 (0.55-0.98)b |
<0.001
0.03 |
Thromboembolic stroke |
32 |
17 |
17 |
0.52 (0.28-0.98)a
0.52 (0.28-0.97)b |
0.03
0.03 |
Major Bleedingc |
8 |
33 |
28 |
3.35a (ND)
4.00b (ND) |
ND
ND |
Minor Bleedingd |
39 |
103 |
133 |
3.21a (ND)
2.55b (ND) |
ND
ND |
Death |
92 |
96 |
95 |
|
0.82 |
Mechanical and Bioprosthetic Heart Valves
In a prospective, randomized, open label, positive-controlled study9 in 254 patients, the thromboembolic-free interval was found to be significantly greater in patients with mechanical prosthetic heart valves treated with warfarin alone compared with dipyridamole-aspirin (p<0.005) and pentoxifylline-aspirin (p<0.05) treated patients. Rates of thromboembolic events in these groups were 2.2, 8.6, and 7.9/100 patient years, respectively. Major bleeding rates were 2.5, 0.0, and 0.9/100 patient years, respectively.
In a prospective, open label, clinical trial comparing moderate (INR 2.65) vs. high intensity (INR 9.0) warfarin therapies in 258 patients with mechanical prosthetic heart valves, thromboembolism occurred with similar frequency in the two groups (4.0 and 3.7 events/100 patient years, respectively). Major bleeding was more common in the high intensity group (2.1 events/100 patient years) vs. 0.95 events/100 patient years in the moderate intensity group.10
In a randomized trial in 210 patients comparing two intensities of warfarin therapy (INR 2.0-2.25 vs. INR 2.5-4.0) for a three month period following tissue heart valve replacement, thromboembolism occurred with similar frequency in the two groups (major embolic events 2.0% vs. 1.9%, respectively and minor embolic events 10.8% vs. 10.2%, respectively). Major bleeding complications were more frequent with the higher intensity (major hemorrhages 4.6%) vs. none in the lower intensity.11
INDICATIONS AND USAGE
Warfarin sodium tablets, USP are indicated for the prophylaxis and/or treatment of venous thrombosis and its extension, and pulmonary embolism.
Warfarin sodium tablets, USP are indicated for the prophylaxis and/or treatment of the thromboembolic complications associated with atrial fibrillation and/or cardiac valve replacement.
Warfarin sodium tablets, USP are indicated to reduce the risk of death, recurrent myocardial infarction, and thromboembolic events such as stroke or systemic embolization after myocardial infarction.
CONTRAINDICATIONS
Anticoagulation is contraindicated in any localized or general physical condition or personal circumstance in which the hazard of hemorrhage might be greater than the potential clinical benefits of anticoagulation, such as:
Pregnancy
Warfarin sodium tablets, USP are contraindicated in women who are or may become pregnant because the drug passes through the placental barrier and may cause fatal hemorrhage to the fetus in utero. Furthermore, there have been reports of birth malformations in children born to mothers who have been treated with warfarin during pregnancy.
Embryopathy characterized by nasal hypoplasia with or without stippled epiphyses (chondrodysplasia punctata) has been reported in pregnant women exposed to warfarin during the first trimester. Central nervous system abnormalities also have been reported, including dorsal midline dysplasia characterized by agenesis of the corpus callosum, Dandy-Walker malformation, and midline cerebellar atrophy. Ventral midline dysplasia, characterized by optic atrophy, and eye abnormalities have been observed. Mental retardation, blindness, and other central nervous system abnormalities have been reported in association with second and third trimester exposure. Although rare, teratogenic reports following in utero exposure to warfarin include urinary tract anomalies such as single kidney, asplenia, anencephaly, spina bifida, cranial nerve palsy, hydrocephalus, cardiac defects and congenital heart disease, polydactyly, deformities of toes, diaphragmatic hernia, corneal leukoma, cleft palate, cleft lip, schizencephaly, and microcephaly.
Spontaneous abortion and stillbirth are known to occur and a higher risk of fetal mortality is associated with the use of warfarin. Low birth weight and growth retardation have also been reported.
Women of childbearing potential who are candidates for anticoagulant therapy should be carefully eva luated and the indications critically reviewed with the patient. If the patient becomes pregnant while taking this drug, she should be apprised of the potential risks to the fetus, and the possibility of termination of the pregnancy should be discussed in light of those risks.
Hemorrhagic tendencies or blood dyscrasias.
Recent or contemplated surgery of: (1) central nervous system; (2) eye; (3) traumatic surgery resulting in large open surfaces.
Bleeding tendencies associated with active ulceration or overt bleeding of: (1) gastrointestinal, genitourinary or respiratory tracts; (2) cerebro