设为首页 加入收藏

TOP

WARFARIN SODIUMtablet
2015-04-27 11:05:28 来源: 作者: 【 】 浏览:273次 评论:0

WARNING: BLEEDING RISK

Warfarin sodium can cause major or fatal bleeding. Bleeding is more likely to occur during the starting period and with a higher dose (resulting in a higher INR). Risk factors for bleeding include high intensity of anticoagulation (INR >4.0), age ≥65, highly variable INRs, history of gastrointestinal bleeding, hypertension, cerebrovascular disease, serious heart disease, anemia, malignancy, trauma, renal insufficiency, concomitant drugs (see and long duration of warfarin therapy. Regular monitoring of INR should be performed on all treated patients. Those at high risk of bleeding may benefit from more frequent INR monitoring, careful dose adjustment to desired INR, and a shorter duration of therapy. Patients should be instructed about prevention measures to minimize risk of bleeding and to report immediately to physicians signs and symptoms of bleeding (see ) PRECAUTIONSPRECAUTIONS: ). Information for Patients

DESCRIPTION

Warfarin sodium tablet (crystalline warfarin sodium) is an anticoagulant, which acts by inhibiting vitamin K-dependent coagulation factors. Chemically, it is 3-(α-acetonylbenzyl)-4-hydroxycoumarin and is a racemic mixture of the - and -enantiomers. Crystalline warfarin sodium is an isopropanol clathrate. The crystallization of warfarin sodium virtually eliminates trace impurities present in amorphous warfarin. Its molecular formula is C H NaO , and its structural formula may be represented by the following: RS19154

Structured formula for warfarin sodium tabs

Crystalline warfarin sodium occurs as a white crystalline powder, odorless or practically odorless.

Each warfarin sodium tablet intended for oral administration contains warfarin sodium clathrates equivalent to 1 mg or 2 mg or 2.5 mg or 3 mg or 4 mg or 5 mg or 6 mg or 7.5 mg or 10 mg of warfarin sodium. In addition each tablet contains the inactive ingredients hydroxypropyl cellulose, lactose monohydrate, magnesium stearate and pregelatinized starch. Additionally each 1 mg tablet contains D&C red no. 6 barium lake, 2 mg tablet contains FD&C blue no. 2 aluminum lake and FD&C red no. 40 aluminum lake, 2.5 mg tablet contains D&C yellow no. 10 aluminum lake and FD&C blue no. 1 aluminum lake, 3 mg tablet contains FD&C yellow no. 6 aluminum lake, FD&C blue no. 2 aluminum lake and FD&C red no. 40 aluminum lake, 4 mg tablet contains FD&C blue no. 1 aluminum lake, 5 mg tablet contains FD&C yellow no. 6 aluminum lake, 6 mg tablet contains FD&C yellow no. 6 aluminum lake and FD&C blue no. 1 aluminum lake, 7.5 mg tablet contains D&C yellow no. 10 aluminum lake and FD&C yellow no.6 aluminum lake and 10 mg tablet is dye free.

CLINICAL PHARMACOLOGY

Warfarin sodium tablets and other coumarin anticoagulants act by inhibiting the synthesis of vitamin K dependent clotting factors, which include Factors II, VII, IX and X, and the anticoagulant proteins C and S. Half-lives of these clotting factors are as follows: Factor II - 60 hours, VII – 4 to 6 hours, IX - 24 hours, and X – 48 to 72 hours. The half-lives of proteins C and S are approximately 8 hours and 30 hours, respectively. The resultant effect is a sequential depression of Factor VII, Protein C, Factor IX, Protein S, and Factor X and II activities. Vitamin K is an essential cofactor for the post ribosomal synthesis of the vitamin K dependent clotting factors. The vitamin promotes the biosynthesis of γ-carboxyglutamic acid residues in the proteins which are essential for biological activity. in vivo

Mechanism of Action

Warfarin is thought to interfere with clotting factor synthesis by inhibition of the C1 subunit of the vitamin K epoxide reductase (VKORC1) enzyme complex, thereby reducing the regeneration of vitamin K epoxide. The degree of depression is dependent upon the dosage administered and, in part, by the patient’s VKORC1 genotype. Therapeutic doses of warfarin decrease the total amount of the active form of each vitamin K dependent clotting factor made by the liver by approximately 30% to 50%. 1

An anticoagulation effect generally occurs within 24 hours after drug administration. However, peak anticoagulant effect may be delayed 72 to 96 hours. The duration of action of a single dose of racemic warfarin is 2 to 5 days. The effects of warfarin sodium tablets may become more pronounced as effects of daily maintenance doses overlap. Anticoagulants have no direct effect on an established thrombus, nor do they reverse ischemic tissue damage. However, once a thrombus has occurred, the goal of anticoagulant treatment is to prevent further extension of the formed clot and prevent secondary thromboembolic complications which may result in serious and possibly fatal sequelae.

Pharmacokinetics

Warfarin sodium is a racemic mixture of the - and -enantiomers. The -enantiomer exhibits 2 to 5 times more anticoagulant activity than the -enantiomer in humans, but generally has a more rapid clearance. RSSR

Absorption

Warfarin sodium tablet is essentially completely absorbed after oral administration with peak concentration generally attained within the first 4 hours.

Distribution

There are no differences in the apparent volumes of distribution after intravenous and oral administration of single doses of warfarin solution. Warfarin distributes into a relatively small apparent volume of distribution of about 0.14 liter/kg. A distribution phase lasting 6 to 12 hours is distinguishable after rapid intravenous or oral administration of an aqueous solution. Using a one compartment model, and assuming complete bioavailability, estimates of the volumes of distribution of R- and S-warfarin are similar to each other and to that of the racemate. Concentrations in fetal plasma approach the maternal values, but warfarin has not been found in human milk (see Approximately 99% of the drug is bound to plasma proteins. ). WARNINGS: Lactation

Metabolism

The elimination of warfarin is almost entirely by metabolism. Warfarin sodium tablets are stereoselectively metabolized by hepatic microsomal enzymes (cytochrome P-450) to inactive hydroxylated metabolites (predominant route) and by reductases to reduced metabolites (warfarin alcohols). The warfarin alcohols have minimal anticoagulant activity. The metabolites are principally excreted into the urine; and to a lesser extent into the bile. The metabolites of warfarin that have been identified include dehydrowarfarin, two diastereoisomer alcohols, 4'-, 6-, 7-, 8- and 10-hydroxywarfarin. The cytochrome P-450 isozymes involved in the metabolism of warfarin include 2C9, 2C19, 2C8, 2C18, 1A2, and 3A4. 2C9 is likely to be the principal form of human liver P-450 which modulates the anticoagulant activity of warfarin. in vivo

The S-enantiomer of warfarin is mainly metabolized to 7-hydroxywarfarin by CYP2C9, a polymorphic enzyme. The variant alleles CYP2C9*2 and CYP2C9*3 result in decreased CYP2C9 enzymatic 7-hydroxylation of S-warfarin. The frequencies of these alleles in Caucasians are approximately 11% and 7% for CYP2C9*2 and CYP2C9*3, respectively . Patients with one or more of these variant CYP2C9 alleles have decreased S-warfarin clearance ( ). in vitro1Table 12

Table 1 Relationship between S-Warfarin Clearance and CYP2C9 Genotype in Caucasian Patients
CYP2C9Genotype N S-WarfarinClearance/LeanBodyWeight
    (mL/min/kg)
    Mean(SD) *
*
SD=standard deviation.
p<0.001. Pairwise comparisons indicated significant differences among all 3 genotypes.
*1/*1 118 0.065(0.025) †
*1/*2or*1/*3 59 0.041(0.021) †
*2/*2,*2/*3or*3/*3 11 0.020(0.011) †
Total 188  

Other CYP2C9 alleles associated with reduced enzymatic activity occur at lower frequencies, including *5, *6, and *11 alleles in populations of African ancestry and *5, *9 and *11 alleles in Caucasians.

Excretion:

The terminal half-life of warfarin after a single dose is approximately 1 week; however, the effective half-life ranges from 20 to 60 hours, with a mean of about 40 hours. The clearance of R-warfarin is generally half that of S-warfarin, thus as the volumes of distribution are similar, the half-life of R-warfarin is longer than that of S-warfarin. The half-life of R-warfarin ranges from 37 to 89 hours, while that of S-warfarin ranges from 21 to 43 hours. Studies with radiolabeled drug have demonstrated that up to 92% of the orally administered dose is recovered in urine. Very little warfarin is excreted unchanged in urine. Urinary excretion is in the form of metabolites.

Pharmacogenomics

A meta-analysis of 9 qualified studies including 2775 patients (99% Caucasian) was performed to examine the clinical outcomes associated with CYP2C9 gene variants in warfarin-treated patients. In this meta-analysis, 3 studies assessed bleeding risks and 8 studies assessed daily dose requirements. The analysis suggested an increased bleeding risk for patients carrying either the CYP2C9*2 or CYP2C9*3 alleles. Patients carrying at least one copy of the CYP2C9*2 allele required a mean daily warfarin dose that was 17% less than the mean daily dose for patients homozygous for the CYP2C9*1 allele. For patients carrying at least one copy of the CYP2C9*3 allele, the mean daily warfarin dose was 37% less than the mean daily dose for patients homozygous for the CYP2C9*1 allele. 3

In an observational study, the risk of achieving INR >3 during the first 3 weeks of warfarin therapy was determined in 219 Swedish patients retrospectively grouped by CYP2C9 genotype. The relative risk of over anticoagulation as measured by INR >3 during the first 2 weeks of therapy was approximately doubled for those patients classified as *2 or *3 compared to patients who were homozygous for the *1 allele. 4

Warfarin reduces the regeneration of vitamin K from vitamin K epoxide in the vitamin K cycle, through inhibition of vitamin K epoxide reductase (VKOR), a multiprotein enzyme complex. Certain single nucleotide polymorphisms in the VKORC1 gene (especially the -1639G>A allele) have been associated with lower dose requirements for warfarin. In 201 Caucasian patients treated with stable warfarin doses, genetic variations in the VKORC1 gene were associated with lower warfarin doses. In this study, about 30% of the variance in warfarin dose could be attributed to variations in the VKORC1 gene alone; about 40% of the variance in warfarin dose could be attributed to variations in VKORC1 and CYP2C9 genes combined. About 55% of the variability in warfarin dose could be explained by the combination of VKORC1 and CYP2C9 genotypes, age, height, body weight, interacting drugs, and indication for warfarin therapy in Caucasian patients. Similar observations have been reported in Asian patients. 556,7

Elderly

Patients 60 years or older appear to exhibit greater than expected PT/INR response to the anticoagulant effects of warfarin. The cause of the increased sensitivity to the anticoagulant effects of warfarin in this age group is unknown. This increased anticoagulant effect from warfarin may be due to a combination of pharmacokinetic and pharmacodynamic factors. Racemic warfarin clearance may be unchanged or reduced with increasing age. Limited information suggests there is no difference in the clearance of S-warfarin in the elderly versus young subjects. However, there may be a slight decrease in the clearance of R-warfarin in the elderly as compared to the young. Therefore, as patient age increases, a lower dose of warfarin is usually required to produce a therapeutic level of anticoagulation.

Asians

Asian patients may require lower initiation and maintenance doses of warfarin. One non-controlled study conducted in 151 Chinese outpatients reported a mean daily warfarin requirement of 3.3 ± 1.4 mg to achieve an INR of 2 to 2.5. These patients were stabilized on warfarin for various indications. Patient age was the most important determinant of warfarin requirement in Chinese patients with a progressively lower warfarin requirement with increasing age.

Renal Dysfunction

Renal clearance is considered to be a minor determinant of anticoagulant response to warfarin. No dosage adjustment is necessary for patients with renal failure.

Hepatic Dysfunction

Hepatic dysfunction can potentiate the response to warfarin through impaired synthesis of clotting factors and decreased metabolism of warfarin.

CLINICAL TRIALS

Atrial Fibrillation (AF)

In five prospective randomized controlled clinical trials involving 3711 patients with non-rheumatic AF, warfarin significantly reduced the risk of systemic thromboembolism including stroke (see The risk reduction ranged from 60% to 86% in all except one trial (CAFA: 45%) which stopped early due to published positive results from two of these trials. The incidence of major bleeding in these trials ranged from 0.6 % to 2.7% (see Meta-analysis findings of these studies revealed that the effects of warfarin in reducing thromboembolic events including stroke were similar at either moderately high INR (2.0-4.5) or low INR (1.4-3.0). There was a significant reduction in minor bleeds at the low INR. Similar data from clinical studies in valvular atrial fibrillation patients are not available. ). Table 2). Table 2

TABLE 2 CLINICAL STUDIES OF WARFARIN IN NON-RHEUMATIC AF PATIENTS *
  N       Thromboembolism %MajorBleeding


Study
Warfarin- TreatedPatients


 
ControlPatients

 

PTRatio
INR %RiskReduction

 
-value

p
Warfarin- Treated Patients

 
Control Patients

 
*
All study results of warfarin vs. control are based on intention-to-treat analysis and include ischemic stroke and systemic thromboembolism, excluding hemorrhagic stroke and transient ischemic attacks.
AFASAK 335 336 1.5-2.0 2.8-4.2 60 0.027 0.6 0.0
SPAF 210 211 1.3-1.8 2.0-4.5 67 0.01 1.9 1.9
BAATAF 212 208 1.2-1.5 1.5-2.7 86 <0.05 0.9 0.5
CAFA 187 191 1.3-1.6 2.0-3.0 45 0.25 2.7 0.5
SPINAF 260 265 1.2-1.5 1.4-2.8 79 0.001 2.3 1.5

Myocardial Infarction

WARIS (The Warfarin Re-Infarction Study) was a double-blind, randomized study of 1214 patients 2 to 4 weeks post-infarction treated with warfarin to a target INR of 2.8 to 4.8. [But note that a lower INR was achieved and increased bleeding was associated with INRs above 4.0; (see The primary endpoint was a combination of total mortality and recurrent infarction. A secondary endpoint of cerebrovascular events was assessed. Mean follow-up of the patients was 37 months. The results for each endpoint separately, including an analysis of vascular death, are provided in the following table: )]. DOSAGE AND ADMINISTRATION

以下是“全球医药”详细资料
Tags: 责任编辑:admin
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到QQ空间
分享到: 
上一篇JANTOVEN(warfarin sodium) tablet 下一篇WARFARIN SODIUM(warfarin sodium..

相关栏目

最新文章

图片主题

热门文章

推荐文章

相关文章

广告位