FORTAMET (metformin hydrochloride) Extended-Release Tablets
FORTAMET (metformin hydrochloride) Extended-Release Tablets contain an oral antihyperglycemic drug used in the management of type 2 diabetes. Metformin hydrochloride (N, N-dimethylimidodicarbonimidic diamide hydrochloride) is a member of the biguanide class of oral antihyperglycemics and is not chemically or pharmacologically related to any other class of oral antihyperglycemic agents. The empirical formula of metformin hydrochloride is CHN•HCl and its molecular weight is 165.63. Its structural formula is:
Metformin hydrochloride is a white to off-white crystalline powder that is freely soluble in water and is practically insoluble in acetone, ether, and chloroform. The pKa of metformin is 12.4. The pH of a 1% aqueous solution of metformin hydrochloride is 6.68.
FORTAMET Extended-Release Tablets are designed for once-a-day oral administration and deliver 500 mg or 1000 mg of metformin hydrochloride. In addition to the active ingredient metformin hydrochloride, each tablet contains the following inactive ingredients: candellila wax, cellulose acetate, hypromellose, magnesium stearate, polyethylene glycols (PEG 400, PEG 8000), polysorbate 80, povidone, sodium lauryl sulfate, synthetic black iron oxides, titanium dioxide, and triacetin.
FORTAMET meets USP Dissolution Test 5.
FORTAMET was developed as an extended-release formulation of metformin hydrochloride and designed for once-a-day oral administration using the patented single-composition osmotic technology (SCOT™). The tablet is similar in appearance to other film-coated oral administered tablets but it consists of an osmotically active core formulation that is surrounded by a semipermeable membrane. Two laser drilled exit ports exist in the membrane, one on either side of the tablet. The core formulation is composed primarily of drug with small concentrations of excipients. The semipermeable membrane is permeable to water but not to higher molecular weight components of biological fluids. Upon ingestion, water is taken up through the membrane, which in turn dissolves the drug and excipients in the core formulation. The dissolved drug and excipients exit through the laser drilled ports in the membrane. The rate of drug delivery is constant and dependent upon the maintenance of a constant osmotic gradient across the membrane. This situation exists so long as there is undissolved drug present in the core tablet. Following the dissolution of the core materials, the rate of drug delivery slowly decreases until the osmotic gradient across the membrane falls to zero at which time delivery ceases. The membrane coating remains intact during the transit of the dosage form through the gastrointestinal tract and is excreted in the feces.
Metformin is an antihyperglycemic agent which improves glucose tolerance in patients with type 2 diabetes, lowering both basal and post-prandial plasma glucose. Its pharmacologic mechanisms of action are different from other classes of oral antihyperglycemic agents. Metformin decreases hepatic glucose production, decreases intestinal absorption of glucose, and improves insulin sensitivity by increasing peripheral glucose uptake and utilization. Unlike sulfonylureas, metformin does not produce hypoglycemia in either patients with type 2 diabetes or normal subjects (except in special circumstances, see PRECAUTIONS ) and does not cause hyperinsulinemia. With metformin therapy, insulin secretion remains unchanged while fasting plasma insulin levels and day-long plasma insulin response may actually decrease.
The appearance of metformin in plasma from a FORTAMET Extended-Release Tablet is slower and more prolonged compared to immediate-release metformin.
In a multiple-dose crossover study, 23 patients with type 2 diabetes mellitus were administered either FORTAMET 2000 mg once a day (after dinner) or immediate-release (IR) metformin hydrochloride 1000 mg twice a day (after breakfast and after dinner). After 4 weeks of treatment, steady-state pharmacokinetic parameters, area under the concentration-time curve (AUC), time to peak plasma concentration (T), and maximum concentration (C) were eva luated. Results are presented in Table 1.
In four single-dose studies and one multiple-dose study, the bioavailability of FORTAMET 2000 mg given once daily, in the evening, under fed conditions [as measured by the area under the plasma concentration versus time curve (AUC)] was similar to the same total daily dose administered as immediate-release metformin 1000 mg given twice daily. The geometric mean ratios (FORTAMET/immediate-release metformin) of AUC, AUC, and AUC. for these five studies ranged from 0.96 to 1.08.
In a single-dose, four-period replicate crossover design study, comparing two 500 mg FORTAMET tablets to one 1000 mg FORTAMET tablet administered in the evening with food to 29 healthy male subjects, two 500 mg FORTAMET tablets were found to be equivalent to one 1000 mg FORTAMET tablet.
In a study carried out with FORTAMET, there was a dose-associated increase in metformin exposure over 24 hours following oral administration of 1000, 1500, 2000, and 2500 mg.
In three studies with FORTAMET using different treatment regimens (2000 mg after dinner; 1000 mg after breakfast and after dinner; and 2500 mg after dinner), the pharmacokinetics of metformin as measured by AUC appeared linear following multiple-dose administration.
The extent of metformin absorption (as measured by AUC) from FORTAMET increased by approximately 60% when given with food. When FORTAMET was administered with food, C was increased by approximately 30% and T was more prolonged compared with the fasting state (6.1 versus 4.0 hours).
Table 1 FORTAMET® vs. Immediate-Release Metformin Steady-State Pharmacokinetic Parameters at 4 Weeks
Pharmacokinetic Parameters
(mean ± SD) |
FORTAMET®
2000 mg
(administered q.d. after dinner) |
Immediate-Release Metformin
2000 mg
(1000 mg b.i.d.) |
AUC0-24hr (ng∙hr/mL) |
26,811 ± 7055 |
27,371 ± 5,781 |
Tmax (hr) |
6 (3-10) |
3 (1-8) |
Cmax (ng/mL) |
2849 ± 797 |
1820 ± 370 |
Distribution studies with FORTAMET have not been conducted. However, the apparent volume of distribution (V/F) of metformin following single oral doses of immediate-release metformin 850 mg averaged 654 ± 358 L. Metformin is negligibly bound to plasma proteins, in contrast to sulfonylureas, which are more than 90% protein bound. Metformin partitions into erythrocytes, most likely as a function of time. At usual clinical doses and dosing schedules of immediate-release metformin, steady state plasma concentrations of metformin are reached within 24-48 hours and are generally <1 µg/mL. During controlled clinical trials of immediate-release metformin, maximum metformin plasma levels did not exceed 5 µg/mL, even at maximum doses.
Metabolism studies with FORTAMET have not been conducted. Intravenous single-dose studies in normal subjects demonstrate that metformin is excreted unchanged in the urine and does not undergo hepatic metabolism (no metabolites have been identified in humans) nor biliary excretion.
In healthy nondiabetic adults (N=18) receiving 2500 mg q.d. FORTAMET, the percent of the metformin dose excreted in urine over 24 hours was 40.9% and the renal clearance was 542 ± 310 mL/min. After repeated administration of FORTAMET, there is little or no accumulation of metformin in plasma, with most of the drug being eliminated via renal excretion over a 24-hour dosing interval. The t was 5.4 hours for FORTAMET.
Renal clearance of metformin (Table 2) is approximately 3.5 times greater than creatinine clearance, which indicates that tubular secretion is the major route of metformin elimination. Following oral administration, approximately 90% of the absorbed drug is eliminated via the renal route within the first 24 hours, with a plasma elimination half-life of approximately 6.2 hours. In blood, the elimination half-life is approximately 17.6 hours, suggesting that the erythrocyte mass may be a compartment of distribution.
Limited data from controlled pharmacokinetic studies of immediate-release metformin in healthy elderly subjects suggest that total plasma clearance of metformin is decreased, the half-life is prolonged, and C is increased, compared to healthy young subjects. From these data, it appears that the change in metformin pharmacokinetics with aging is primarily accounted for by a change in renal function (Table 2). FORTAMET treatment should not be initiated in patients ≥ 80 years of age unless measurement of creatinine clearance demonstrates that renal function is not reduced (see WARNINGS, PRECAUTIONS and DOSAGE AND ADMINISTRATION ).
No pharmacokinetic data from studies of pediatric patients are currently available (see PRECAUTIONS ).
Five studies indicated that with FORTAMET treatment, the pharmacokinetic results for males and females were comparable.
Table 2 Select Mean (±SD) Metformin Pharmacokinetic Parameters Following Single or Multiple Oral Doses of Immediate-Release Metformin
Subject Groups: Immediate-Release Metformin dose (number of subjects) |
Cmax
(µg/mL) |
Tmax
(hrs) |
Renal Clearance
(mL/min) |
Healthy, nondiabetic adults: |
500 mg single dose (24) |
1.03 (±0.33) |
2.75 (±0.81) |
600 (±132) |
850 mg single dose (74) |
1.60 (±0.38) |
2.64 (±0.82) |
552 (±139) |
850 mg three times daily for 19 doses (9) |
2.01 (±0.42) |
1.79 (±0.94) |
642 (±173) |
Adults with type 2 diabetes: |
850 mg single dose (23) |
1.48 (±0.5) |
3.32 (±1.08) |
491 (±138) |
850 mg three times daily for 19 dosese (9) |
1.90 (±0.62) |
2.01 (±1.22) |
550 (±160) |
Elderly, healthy nondiabetic adults: |
850 mg single dose (12) |
2.45 (±0.70) |
2.71 (±1.05) |
412 (±98) |
Renal-impaired adults: 850 mg single dose |
Mild (CLcr61-90 mL/min) (5) |
1.86 (±0.52) |
3.20 (±0.45) |
384 (±122) |
Moderate (CLcr 31-60 mL/min) (4) |
4.12 (±1.83) |
3.75 (±0.50) |
108 (±57) |
Severe (CLcr 10-30 mL/min) (6) |
3.93 (±0.92) |
4.01 (±1.10) |
130 (±90) |
In patients with decreased renal function (based on measured creatinine clearance), the plasma and blood half-life of metformin is prolonged and the renal clearance is decreased in proportion to the decrease in creatinine clearance (Table 2; also see WARNINGS ).
No pharmacokinetic studies of metformin have been conducted in patients with hepatic insufficiency.
No studies of metformin pharmacokinetic parameters according to race have been performed. In controlled clinical studies of immediate-release metformin in patients with type 2 diabetes, the antihyperglycemic effect was comparable in whites (n=249), blacks (n=51), and Hispanics (n=24).
In a double-blind, randomized, active-controlled, multicenter U.S. clinical study, which compared FORTAMET q.d. to immediate-release metformin b.i.d., 680 patients with type 2 diabetes who had been taking metformin-containing medication at study entry were randomly assigned in equal numbers to double-blind treatment with either FORTAMET or immediate-release metformin. Doses were adjusted during the first six weeks of treatment with study medication based on patients' FPG levels and were then held constant over a period of 20 weeks. The primary efficacy endpoint was the change in HbA from baseline to endpoint. The primary objective was to demonstrate the clinical non-inferiority of FORTAMET compared to immediate-release metformin on the primary endpoint.
FORTAMET and metformin patients had mean HbA changes from baseline to endpoint equal to +0.40 and +0.14, respectively (Table 3). The least-square (LS) mean treatment difference was 0.25 (95% CI = 0.14, 0.37) demonstrating that FORTAMET was clinically similar to metformin according to the pre-defined criterion to establish efficacy.
Footnote: Patients were taking metformin-containing medications at baseline that were prescribed by their personal physician.
The mean changes for FPG (Table 3) and plasma insulin (Table 3) were small for both FORTAMET and immediate-release metformin, and were not clinically meaningful. Seventy-six (22%) and 49 (14%) of the FORTAMET and immediate-release patients, respectively, discontinued prematurely from the trial. Eighteen (5%) patients on FORTAMET withdrew because of a stated lack of efficacy, as compared with 8 patients (2%) on immediate-release metformin (p=0.047).
Results from this study also indicated that neither FORTAMET nor immediate-release metformin were associated with weight gain or increases in body mass index.
A 24-week, double blind, placebo-controlled study of immediate-release metformin plus insulin, versus insulin plus placebo, was conducted in patients with type 2 diabetes who failed to achieve adequate glycemic control on insulin alone (Table 4). Patients randomized to receive immediate-release metformin plus insulin achieved a reduction in HbA of 2.10%, compared to a 1.56% reduction in HbA achieved by insulin plus placebo. The improvement in glycemic control was achieved at the final study visit with 16% less insulin, 93.0 U/day versus 110.6 U/day, immediate-release metformin plus insulin versus insulin plus placebo, respectively, p=0.04.
A second double-blind, placebo-controlled study (n=51), with 16 weeks of randomized treatment, demonstrated that in patients with type 2 diabetes controlled on insulin for 8 weeks with an average HbA of 7.46 ± 0.97%, the addition of immediate-release metformin maintained similar glycemic control (HbA 7.15 ± 0.61 versus 6.97 ± 0.62 for immediate-release metformin plus insulin and placebo plus insulin, respectively) with 19% less insulin versus baseline (reduction of 23.68 ± 30.22 versus an increase of 0.43 ± 25.20 units for immediate-release metformin plus insulin and placebo plus insulin, p<0.01). In addition, this study demonstrated that the combination of immediate-release metformin plus insulin resulted in reduction in body weight of 3.11 ± 4.30 lbs, compared to an increase of 1.30 ± 6.08 lbs for placebo plus insulin, p=0.01.
Table 3 FORTAMET® vs. Immediate-Release Metformin Switch Study: Summary of Mean Changes in HbA1c, Fasting Plasma Glucose, Body Weight, Body Mass Index, and Plasma Insulin
|
FORTAMET® |
Immediate-Release Metformin |
Treatment difference for change from baseline (FORTAMET®) minus Immediate-Release Metformin) LSmean (2 sided 95% CI) |
HbA1c (%)
N
Baseline (mean ± SD)
Change from baseline (mean ± SD) |
327
7.04 ± 0.88
0.40 ± 0.75 |
332
7.07 ± 0.76
0.14 ± 0.75 |
0.25
(0.14, 0.37) |
Fasting Plasma Glucose
(mg/dL)
N
Baseline (mean ± SD)
Change from baseline (mean ± SD) |
329
146.8 ± 32.1
10.0 ± 40.8 |
333
145.6 ± 29.5
4.2 ± 35.9 |
6.43
(0.57, 12.29) |
Plasma Insulin (µu/mL)
N
Baseline (mean ± SD)
Change from baseline (mean ± SD) |
304
17.9 ± 15.1
-3.6 ± 13.8 |
316
17.3 ± 10.5
-3.2 ± 8.6 |
0.02
(-1.47, 1.50) |
BodyWeight (kg)
N
Baseline (mean ± SD)
Change from baseline (mean ± SD) |
313
94.1 ± 17.8
0.3 ± 2.9 |
320
93.3 ± 17.4
0.0 ± 3.7 |
0.30
(-0.22, 0.81) |
Body Mass Index (kg/m2)
N
Baseline (mean ± SD)
Change from baseline (mean ± SD) |
313
31.1 ± 4.7
0.1 ± 1.1 |
320
31.4 ± 4.5
0.0 ± 1.3 |
0.08
(-0.11, 0.26) |
Table 4 Combined Immediate-Release Metformin/Insulin vs. Placebo/Insulin: Summary of Mean Changes from Baseline in HbA1c and Daily Insulin Dose
|
Immediate-Release Metformin/Insulin |
Placebo/Insulin |
Treatment difference |
|
(n = 26) |
(n = 28) |
Mean ± SE |
HbA1c (%) |
|
|
|
Baseline |
8.95 |
9.32 |
|
Change at FINAL VISIT |
-2.10 |
-1.56 |
-0.54 ± 0.43 |
Insulin Dose (U/day) |
|
|
|
Baseline |
93.12 |
94.64 |
|
Change at FINAL VISIT |
-0.15 |
15.93 |
-16.08 ± 7.77 |
No pediatric clinical studies have been conducted with FORTAMET. In a double-blind, placebo-controlled study in pediatric patients aged 10 to 16 years with type 2 diabetes (mean FPG 182.2 mg/dL), treatment with immediate-release metformin (up to 2000 mg/day) for up to 16 weeks (mean duration of treatment 11 weeks) resulted in a significant mean net reduction in FPG of 64.3 mg/dL compared with placebo (Table 5).
Table 5 Immediate-Release Metformin vs. Placebo (Pediatrics): Summary of Mean Changes from Baseline in Plasma Glucose and Body Weight at Final Visit
|
Immediate-Release Metformin |
Placebo |
p-Value |
FPGmg/dL |
(n = 37) |
(n = 36) |
|
Baseline |
162.4 |
192.3 |
|
Change at FINAL VISIT |
-42.9 |
21.4 |
<0.001 |
BodyWeight (lbs) |
(n = 39) |
(n = 38) |
|
Baseline |
205.3 |
189.0 |
|
Change at FINAL VISIT |
-3.3 |
-2.0 |
NS |
FORTAMET is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.
FORTAMET is contraindicated in patients with:
FORTAMET should be temporarily discontinued in patients undergoing radiologic studies involving intravascular administration of iodinated contrast materials, because use of such products may result in acute alteration of renal function (see also PRECAUTIONS ).
Lactic acidosis is a rare, but serious, metabolic complication that can occur due to metformin accumulation during treatment with FORTAMET (metformin hydrochloride) Extended-Release Tablets; when it occurs, it is fatal in approximately 50% of cases. Lactic acidosis may also occur in association with a number of pathophysiologic conditions, including diabetes mellitus, and whenever there is significant tissue hypoperfusion and hypoxemia. Lactic acidosis is characterized by elevated blood lactate levels (>5 mmol/L), decreased blood pH, electrolyte disturbances with an increased anion gap, and an increased lactate/pyruvate ratio. When metformin is implicated as the cause of lactic acidosis, metformin plasma levels >5 µg/mL are generally found.
The reported incidence of lactic acidosis in patients receiving metformin hydrochloride is very low (approximately 0.03 cases/1000 patient-years, with approximately 0.015 fatal cases/1000 patient-years). Reported cases have occurred primarily in diabetic patients with significant renal insufficiency, including both intrinsic renal disease and renal hypoperfusion, often in the setting of multiple concomitant medical/surgical problems and multiple concomitant medications. Patients with congestive heart failure requiring pharmacologic management, in particular those with unstable or acute congestive heart failure who are at risk of hypoperfusion and hypoxemia, are at increased risk of lactic acidosis. The risk of lactic acidosis increases with the degree of renal dysfunction and the patient's age. The risk of lactic acidosis may, therefore, be significantly decreased by regular monitoring of renal function in patients taking FORTAMET (metformin hydrochloride) Extended-Release Tablets and by use of the minimum effective dose of FORTAMET. In particular, treatment of the elderly should be accompanied by careful monitoring of renal function. FORTAMET treatment should not be initiated in patients ≥80 years of age unless measurement of creatinine clearance demonstrates that renal function is not reduced, as these patients are more susceptible to developing lactic acidosis. In addition, FORTAMET should be promptly withheld in the presence of any condition associated with hypoxemia, dehydration, or sepsis. Because impaired hepatic function may significantly limit the ability to clear lactate, FORTAMET should generally be avoided in patients with clinical or laboratory evidence of hepatic disease. Patients should be cautioned against excessive alcohol intake, either acute or chronic, when taking FORTAMET, since alcohol potentiates the effects of metformin hydrochloride on lactate metabolism. In addition, FORTAMET should be temporarily discontinued prior to any intravascular radiocontrast study and for any surgical procedure (see also PRECAUTIONS).
The onset of lactic acidosis often is subtle, and accompanied only by nonspecific symptoms such as malaise, myalgias, respiratory distress, increasing somnolence, and nonspecific abdominal distress. There may be associated hypothermia, hypotension, and resistant bradyarrhythmias with more marked acidosis. The patient and the patient's physician must be aware of the possible importance of such symptoms and the patient should be instructed to notify the physician immediately if they occur (see also PRECAUTIONS). FORTAMET should be withdrawn until the situation is clarified. Serum electrolytes, ketones, blood glucose and, if indicated, blood pH, lactate levels, and even blood metformin levels may be useful. Once a patient is stabilized on any dose level of FORTAMET, gastrointestinal symptoms, which are common during initiation of therapy, are unlikely to be drug related. Later occurrence of gastrointestinal symptoms could be due to lactic acidosis or other serious disease.
Levels of fasting venous plasma lactate above the upper limit of normal but less than 5 mmol/L in patients taking FORTAMET do not necessarily indicate impending lactic acidosis and may be explainable by other mechanisms, such as poorly controlled diabetes or obesity, vigorous physical activity, or technical problems in sample handling (see also PRECAUTIONS).
Lactic acidosis should be suspected in any diabetic patient with metabolic acidosis lacking evidence of ketoacidosis (ketonuria and ketonemia).
Lactic acidosis is a medical emergency that must be treated in a hospital setting. In a patient with lactic acidosis who is taking FORTAMET, the drug should be discontinued immediately and general supportive measures promptly instituted. Because metformin hydrochloride is dialyzable (with a clearance of up to 170 mL/min under good hemodynamic conditions), prompt hemodialysis is recommended to correct the acidosis and remove the accumulated metformin. Such management often results in prompt reversal of symptoms and recovery (see also CONTRAINDICATIONS and PRECAUTIONS).
Metformin is known to be substantially excreted by the kidney, and the risk of metformin accumulation and lactic acidosis increases with the degree of impairment of renal function. Thus, patients with serum creatinine levels above the upper limit of normal for their age should not receive FORTAMET. In patients with advanced age, FORTAMET should be carefully titrated to establish the minimum dose for adequate glycemic effect, because aging is associated with reduced renal function. In elderly patients, particularly those ≥80 years of age, renal function should be monitored regularly and, generally, FORTAMET should not be titrated to the maximum dose (see WARNINGS and DOSAGE AND ADMINISTRATION ).
Before initiation of FORTAMET therapy and at least annually thereafter, renal function should be assessed and verified as normal. In patients in whom development of renal dysfunction is anticipated, renal function should be assessed more frequently and FORTAMET discontinued if evidence of renal impairment is present.
There have been no clinical studies establishing conclusive evidence of macrovascular risk reduction with FORTAMET or any other anti-diabetic drug.
Concomitant medication(s) that may affect renal function or result in significant hemodynamic change or may interfere with the disposition of metformin, such as cationic drugs that are eliminated by renal tubular secretion (see PRECAUTIONS: Drug Interactions ), should be used with caution.
Intravascular contrast studies with iodinated materials can lead to acute alteration of renal function and have been associated with lactic acidosis in patients receiving metformin (see CONTRAINDICATIONS ). Therefore, in patients in whom any such study is planned, FORTAMET should be temporarily discontinued at the time of or prior to the procedure, and withheld for 48 hours subsequent to the procedure and reinstituted only after renal function has been re-eva luated and found to be normal.
Cardiovascular collapse (shock) from whatever cause, acute congestive heart failure, acute myocardial infarction and other conditions characterized by hypoxemia have been associated with lactic acidosis and may also cause prerenal azotemia. When such events occur in patients on FORTAMET therapy, the drug should be promptly discontinued.
FORTAMET therapy should be temporarily suspended for any surgical procedure (except minor procedures not associated with restricted intake of food and fluids) and should not be restarted until the patient's oral intake has resumed and renal function has been eva luated as normal.
Alcohol is known to potentiate the effect of metformin on lactate metabolism. Patients, therefore, should be warned against excessive alcohol intake, acute or chronic, while receiving FORTAMET.
Since impaired hepatic function has been associated with some cases of lactic acidosis, FORTAMET should generally be avoided in patients with clinical or laboratory evidence of hepatic disease.
In controlled clinical trials of immediate-release metformin of 29 weeks duration, a decrease to subnormal levels of previously normal serum Vitamin B levels, without clinical manifestations, was observed in approximately 7% of patients. Such decrease, possibly due to interference with B absorption from the B-intrinsic factor complex, is, however, very rarely associated with anemia and appears to be rapidly reversible with discontinuation of immediate-release metformin or Vitamin B supplementation. Measurement of hematologic parameters on an annual basis is advised in patients on FORTAMET and any apparent abnormalities should be appropriately investigated and managed (see PRECAUTIONS: Laboratory Tests ). Certain individuals (those with inadequate Vitamin B or calcium intake or absorption) appear to be predisposed to developing subnormal Vitamin B levels. In these patients, routine serum Vitamin B measurements at two- to three-year intervals may be useful.
A patient with type 2 diabetes previously well controlled on FORTAMET who develops laboratory abnormalities or clinical illness (especially vague and poorly defined illness) should be eva luated promptly for evidence of ketoacidosis or lactic acidosis. eva luation should include serumelectrolytes and ketones, blood glucose and, if indicated, blood pH, lactate, pyruvate, andmetformin levels. If acidosis of either form occurs, FORTAMET must be stopped immediately and other appropriate corrective measures initiated (see also WARNINGS ).
Hypoglycemia does not occur in patients receiving FORTAMET alone under usual circumstances of use, but could occur when caloric intake is deficient, when strenuous exercise is not compensated by caloric supplementation, or during concomitant use with other glucose-lowering agents (such as sulfonylureas and insulin) or ethanol. Elderly, debilitated, or malnourished patients, and those with adrenal or pituitary insufficiency or alcohol intoxication are particularly susceptible to hypoglycemic effects. Hypoglycemia may be difficult to recognize in the elderly, and in people who are taking beta-adrenergic blocking drugs.
When a patient stabilized on any diabetic regimen is exposed to stress such as fever, trauma, infection, or surgery, a temporary loss of glycemic control may occur. At such times, it may be necessary to withhold FORTAMET and temporarily administer insulin. FORTAMET may be reinstituted after the acute episode is resolved.
The effectiveness of oral antidiabetic drugs in lowering blood glucose to a targeted level decreases in many patients over a period of time. This phenomenon, which may be due to progression of the underlying disease or to diminished responsiveness to the drug, is known as secondary failure, to distinguish it from primary failure in which the drug is ineffective during initial therapy. Should secondary failure occur with FORTAMET or sulfonylurea monotherapy, combined therapy with FORTAMET and sulfonylurea may result in a response. Should secondary failure occur with combined FORTAMET/sulfonylurea therapy, it may be necessary to consider therapeutic alternatives including initiation of insulin therapy.
Patients should be informed of the potential risks and benefits of FORTAMET and of alternative modes of therapy. They should also be informed about the importance of adherence to dietary instructions, of a regular exercise program, and of regular testing of blood glucose, glycosylated hemoglobin, renal function, and hematologic parameters.
The risks of lactic acidosis, its symptoms, and conditions that predispose to its development, as noted in the WARNINGS and PRECAUTIONS sections, should be explained to patients. Patients should be advised to discontinue FORTAMET immediately and to promptly notify their health practitioner if unexplained hyperventilation, myalgia, malaise, unusual somnolence, or other nonspecific symptoms occur. Once a patient is stabilized on any dose level of FORTAMET, gastrointestinal symptoms, which are common during initiation of metformin therapy, are unlikely to be drug related. Later occurrence of gastrointestinal symptoms could be due to lactic acidosis or other serious disease.
Patients should be counseled against excessive alcohol intake, either acute or chronic, while receiving FORTAMET.
FORTAMET alone does not usually cause hypoglycemia, although it may occur when FORTAMET is used in conjunction with oral sulfonylureas and insulin. When initiating combination therapy, the risks of hypoglycemia, its symptoms and treatment, and conditions that predispose to its development should be explained to patients and responsible family members (see Patient Information Printed Below).
Patients should be informed that FORTAMET must be swallowed whole and not chewed, cut, or crushed, and that the inactive ingredients may occasionally be eliminated in the feces as a soft mass that may resemble the original tablet (see Patient Information ).
Response to all diabetic therapies should be monitored by periodic measurements of fasting blood glucose and glycosylated hemoglobin levels, with a goal of decreasing these levels toward the normal range. During initial dose titration, fasting glucose can be used to determine the therapeutic response. Thereafter, both glucose and glycosylated hemoglobin should be monitored. Measurements of glycosylated hemoglobin may be especially useful for eva luating long-term control (see also DOSAGE AND ADMINISTRATION ).
Initial and periodic monitoring of hematologic parameters (e.g., hemoglobin/hematocrit and red blood cell indices) and renal function (serum creatinine) should be performed, at least on an annual basis. While megaloblastic anemia has rarely been seen with immediate-release metformin therapy, if this is suspected, Vitamin B deficiency should be excluded.
In a single-dose interaction study in type 2 diabetes patients, co-administration of metformin and glyburide did not result in any changes in either metformin pharmacokinetics or pharmacodynamics. Decreases in glyburide AUC and C were observed, but were highly variable. The single-dose nature of this study and the lack of correlation between glyburide blood levels and pharmacodynamic effects, makes the clinical significance of this interaction uncertain (see DOSAGE AND ADMINISTRATION: Concomitant FORTAMET® and Oral Sulfonylurea Therapy in Adult Patients ).
A single-dose, metformin-furosemide drug interaction study in healthy subjects demonstrated that pharmacokinetic parameters of both compounds were affected by co-administration. Furosemide increased the metformin plasma and blood C by 22% and blood AUC by 15%, without any significant change in metformin renal clearance. When administered with metformin, the C and AUC of furosemide were 31% and 12% smaller, respectively, than when administered alone, and the terminal half-life was decreased by 32%, without any significant change in furosemide renal clearance. No information is available about the interaction of metformin and furosemide when co-administered chronically.
A single-dose, metformin-nifedipine drug interaction study in normal healthy volunteers demonstrated that co-administration of nifedipine increased plasma metformin C and AUC by 20% and 9%, respectively, and increased the amount excreted in the urine. T and half-life were unaffected. Nifedipine appears to enhance the absorption of metformin. Metformin had minimal effects on nifedipine.
Cationic drugs (e.g., amiloride, digoxin, morphine, procainamide, quinidine, quinine, ranitidine, triamterene, trimethoprim, or vancomycin) that are eliminated by renal tubular secretion theoretically have the potential for interaction with metformin by competing for common renal tubular transport systems. Such interaction between metformin and oral cimetidine has been observed in normal healthy volunteers in both single- and multiple-dose, metformin-cimetidine drug interaction studies, with a 60% increase in peak metformin plasma and whole blood concentrations and a 40% increase in plasma and whole blood metformin AUC. There was no change in elimination half-life in the single-dose study. Metformin had no effect on cimetidine pharmacokinetics. Although such interactions remain theoretical (except for cimetidine), careful patient monitoring and dose adjustment of FORTAMET and/or the interfering drug is recommended in patients who are taking cationic medications that are excreted via the proximal renal tubular secretory system.
Certain drugs tend to produce hyperglycemia and may lead to loss of glycemic control. These drugs include the thiazides and other diuretics, corticosteroids, phenothiazines, thyroid products, estrogens, oral contraceptives, phenytoin, nicotinic acid, sympathomimetics, calcium channel blocking drugs, and isoniazid. When such drugs are administered to a patient receiving FORTAMET, the patient should be closely observed for loss of blood glucose control. When such drugs are withdrawn from a patient receiving FORTAMET, the patient should be observed closely for hypoglycemia.
In healthy volunteers, the pharmacokinetics of metformin and propranolol, and metformin and ibuprofen were not affected when co-administered in single-dose interaction studies.
Metformin is negligibly bound to plasma proteins and is, therefore, less likely to interact with highly protein-bound drugs such as salicylates, sulfonamides, chloramphenicol, and probenecid, as compared to the sulfonylureas, which are extensively bound to serum proteins.
Long-term carcinogenicity studies with metformin have been performed in rats (dosing duration of 104 weeks) and mice (dosing duration of 91 weeks) at doses up to and including 900 mg/kg/day and 1500 mg/kg/day, respectively. These doses are both approximately four times the maximum recommended human daily dose of 2000 mg based on body surface area comparisons. No evidence of carcinogenicity with metformin was found in either male or female mice. Similarly, there was no tumorigenic potential observed with metformin in male rats. There was, however, an increased incidence of benign stromal uterine polyps in female rats treated with 900 mg/kg/day.
There was no evidence of mutagenic potential of metformin in the following in vitro tests: Ames test (S. typhimurium), gene mutation test (mouse lymphoma cells), or chromosomal aberrations test (human lymphocytes). Results in the in vivo mouse micronucleus test were also negative.
Fertility of male or female rats was unaffected by metformin when administered at doses as high as 600 mg/kg/day, which is approximately three times the maximum recommended human daily dose based on body surface area comparisons.
Recent information strongly suggests that abnormal blood glucose levels during pregnancy are associated with a higher incidence of congenital abnormalities. Most experts recommend that insulin be used during pregnancy to maintain blood glucose levels as close to normal as possible. Because animal reproduction studies are not always predictive of human response, FORTAMET should not be used during pregnancy unless clearly needed.
There are no adequate and well-controlled studies in pregnant women with immediate-release metformin or FORTAMET. Metformin was not teratogenic in rats and rabbits at doses up to 600 mg/kg/day. This represents an exposure of about two and six times the maximum recommended human daily dose of 2000 mg based on body surface area comparisons for rats and rabbits, respectively. Determination of fetal concentrations demonstrated a partial placental barrier to metformin.
Studies in lactating rats show that metformin is excreted into milk and reaches levels comparable to those in plasma. Similar studies have not been conducted in nursing mothers. Because the potential for hypoglycemia in nursing infants may exist, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother. If FORTAMET is discontinued, and if diet alone is inadequate for controlling blood glucose, insulin therapy should be considered.
No pediatric clinical studies have been conducted with FORTAMET. The safety and effectiveness of immediate-release metformin for the treatment of type 2 diabetes have been established in pediatric patients ages 10 to 16 years (studies have not been conducted in pediatric patients below the age of 10 years). Use of immediate-release metformin in this age group is supported by evidence from adequate and well-controlled studies of immediate-release metformin in adults with additional data from a controlled clinical study in pediatric patients ages 10-16 years with type 2 diabetes, which demonstrated a similar response in glycemic control to that seen in adults (see CLINICAL PHARMACOLOGY: Pediatric Clinical Studies ). In this study, adverse effects were similar to those described in adults (see ADVERSE REACTIONS: Pediatric Patients ). A maximum daily dose of 2000 mg of immediate-release metformin is recommended.
The safety and efficacy of FORTAMET has not been eva luated in pediatric patients.
Of the 389 patients who received FORTAMET in controlled Phase III clinical studies, 26.5% [103/389] were 65 years and older. No overall differences in effectiveness or safety were observed between these patients and younger patients.
Controlled clinical studies of immediate-release metformin did not include sufficient numbers of elderly patients to determine whether they respond differently from younger patients, although other reported clinical experience has not identifie
Manufacturer
Shionogi Pharma, Inc.
Active Ingredients
Source
-
U.S. National Library of Medicine
-
DailyMed
-
Last Updated: 2nd of March 2011