设为首页 加入收藏

TOP

Rocephin
2014-04-16 22:17:47 来源: 作者: 【 】 浏览:347次 评论:0

ROCEPHIN (ceftriaxone sodium) FOR INJECTION

To reduce the development of drug-resistant bacteria and maintain the effectiveness of Rocephin and other antibacterial drugs, Rocephin should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.

Rocephin is a sterile, semisynthetic, broad-spectrum cephalosporin antibiotic for intravenous or intramuscular administration. Ceftriaxone sodium is (6R,7R)-7-[2-(2-Amino-4-thiazolyl)glyoxylamido]-8-oxo-3-[[(1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-as-triazin-3-yl)thio]methyl]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, 7-(Z)-(O-methyloxime), disodium salt, sesquaterhydrate.

The chemical formula of ceftriaxone sodium is CHNNaOS•3.5HO. It has a calculated molecular weight of 661.59 and the following structural formula:

Rocephin is a white to yellowish-orange crystalline powder which is readily soluble in water, sparingly soluble in methanol and very slightly soluble in ethanol. The pH of a 1% aqueous solution is approximately 6.7. The color of Rocephin solutions ranges from light yellow to amber, depending on the length of storage, concentration and diluent used.

Rocephin contains approximately 83 mg (3.6 mEq) of sodium per gram of ceftriaxone activity.

IMAGE rocephin-01.jpg

Average plasma concentrations of ceftriaxone following a single 30-minute intravenous (IV) infusion of a 0.5, 1 or 2 gm dose and intramuscular (IM) administration of a single 0.5 (250 mg/mL or 350 mg/mL concentrations) or 1 gm dose in healthy subjects are presented in Table 1.

Ceftriaxone was completely absorbed following IM administration with mean maximum plasma concentrations occurring between 2 and 3 hours post-dose. Multiple IV or IM doses ranging from 0.5 to 2 gm at 12- to 24-hour intervals resulted in 15% to 36% accumulation of ceftriaxone above single dose values.

Ceftriaxone concentrations in urine are shown in Table 2.

Thirty-three percent to 67% of a ceftriaxone dose was excreted in the urine as unchanged drug and the remainder was secreted in the bile and ultimately found in the feces as microbiologically inactive compounds. After a 1 gm IV dose, average concentrations of ceftriaxone, determined from 1 to 3 hours after dosing, were 581 µg/mL in the gallbladder bile, 788 µg/mL in the common duct bile, 898 µg/mL in the cystic duct bile, 78.2 µg/gm in the gallbladder wall and 62.1 µg/mL in the concurrent plasma.

Over a 0.15 to 3 gm dose range in healthy adult subjects, the values of elimination half-life ranged from 5.8 to 8.7 hours; apparent volume of distribution from 5.78 to 13.5 L; plasma clearance from 0.58 to 1.45 L/hour; and renal clearance from 0.32 to 0.73 L/hour. Ceftriaxone is reversibly bound to human plasma proteins, and the binding decreased from a value of 95% bound at plasma concentrations of <25 µg/mL to a value of 85% bound at 300 µg/mL. Ceftriaxone crosses the blood placenta barrier.

The average values of maximum plasma concentration, elimination half-life, plasma clearance and volume of distribution after a 50 mg/kg IV dose and after a 75 mg/kg IV dose in pediatric patients suffering from bacterial meningitis are shown in Table 3. Ceftriaxone penetrated the inflamed meninges of infants and pediatric patients; CSF concentrations after a 50 mg/kg IV dose and after a 75 mg/kg IV dose are also shown in Table 3.

Compared to that in healthy adult subjects, the pharmacokinetics of ceftriaxone were only minimally altered in elderly subjects and in patients with renal impairment or hepatic dysfunction (Table 4); therefore, dosage adjustments are not necessary for these patients with ceftriaxone dosages up to 2 gm per day. Ceftriaxone was not removed to any significant extent from the plasma by hemodialysis; in six of 26 dialysis patients, the elimination rate of ceftriaxone was markedly reduced.

The elimination of ceftriaxone is not altered when Rocephin is co-administered with probenecid.

Table 1 Ceftriaxone Plasma Concentrations After Single Dose Administration
Dose/Route Average Plasma Concentrations (µg/mL)
  0.5 hr 1 hr 2 hr 4 hr 6 hr 8 hr 12 hr 16 hr 24 hr
ND = Not determined.
0.5 gm IVIV doses were infused at a constant rate over 30 minutes. 82 59 48 37 29 23 15 10 5
0.5 gm IM                  
250 mg/mL 22 33 38 35 30 26 16 ND 5
0.5 gm IM                  
350 mg/mL 20 32 38 34 31 24 16 ND 5
1 gm IV 151 111 88 67 53 43 28 18 9
1 gm IM 40 68 76 68 56 44 29 ND ND
2 gm IV 257 192 154 117 89 74 46 31 15
Table 2 Urinary Concentrations of Ceftriaxone After Single Dose Administration
Dose/Route Average Urinary Concentrations (µg/mL)
  0-2 hr 2-4 hr 4-8 hr 8-12 hr 12-24 hr 24-48 hr
ND = Not determined.
0.5 gm IV 526 366 142 87 70 15
0.5 gm IM 115 425 308 127 96 28
1 gm IV 995 855 293 147 132 32
1 gm IM 504 628 418 237 ND ND
2 gm IV 2692 1976 757 274 198 40
Table 3 Average Pharmacokinetic Parameters of Ceftriaxone in Pediatric Patients With Meningitis
  50 mg/kg IV 75 mg/kg IV
Maximum Plasma Concentrations (µg/mL) 216 275
Elimination Half-life (hr) 4.6 4.3
Plasma Clearance (mL/hr/kg) 49 60
Volume of Distribution (mL/kg) 338 373
CSF Concentration—inflamed meninges (µg/mL) 5.6 6.4
Range (µg/mL) 1.3-18.5 1.3-44
Time after dose (hr) 3.7 (± 1.6) 3.3 (± 1.4)
Table 4 Average Pharmacokinetic Parameters of Ceftriaxone in Humans
Subject Group Elimination Half-Life
(hr)
Plasma Clearance
(L/hr)
Volume of Distribution
(L)
Healthy Subjects 5.8-8.7 0.58-1.45 5.8-13.5
Elderly Subjects (mean age, 70.5 yr) 8.9 0.83 10.7
Patients With Renal Impairment      
Hemodialysis Patients (0-5 mL/min)Creatinine clearance. 14.7 0.65 13.7
Severe (5-15 mL/min) 15.7 0.56 12.5
Moderate (16-30 mL/min) 11.4 0.72 11.8
Mild (31-60 mL/min) 12.4 0.70 13.3
Patients With Liver Disease 8.8 1.1 13.6

In one study, total ceftriaxone concentrations (bound and unbound) were measured in middle ear fluid obtained during the insertion of tympanostomy tubes in 42 pediatric patients with otitis media. Sampling times were from 1 to 50 hours after a single intramuscular injection of 50 mg/kg of ceftriaxone. Mean (± SD) ceftriaxone levels in the middle ear reached a peak of 35 (± 12) µg/mL at 24 hours, and remained at 19 (± 7) µg/mL at 48 hours. Based on middle ear fluid ceftriaxone concentrations in the 23 to 25 hour and the 46 to 50 hour sampling time intervals, a half-life of 25 hours was calculated. Ceftriaxone is highly bound to plasma proteins. The extent of binding to proteins in the middle ear fluid is unknown.

Two in vitro studies, one using adult plasma and the other neonatal plasma from umbilical cord blood have been carried out to assess interaction of ceftriaxone and calcium. Ceftriaxone concentrations up to 1 mM (in excess of concentrations achieved in vivo following administration of 2 grams ceftriaxone infused over 30 minutes) were used in combination with calcium concentrations up to 12 mM (48 mg/dL). Recovery of ceftriaxone from plasma was reduced with calcium concentrations of 6 mM (24 mg/dL) or higher in adult plasma or 4 mM (16 mg/dL) or higher in neonatal plasma. This may be reflective of ceftriaxone-calcium precipitation.

The bactericidal activity of ceftriaxone results from inhibition of cell wall synthesis. Ceftriaxone has a high degree of stability in the presence of beta-lactamases, both penicillinases and cephalosporinases, of gram-negative and gram-positive bacteria.

In an in vitro study antagonistic effects have been observed with the combination of chloramphenicol and ceftriaxone.

Ceftriaxone has been shown to be active against most strains of the following microorganisms, both in vitro and in clinical infections described in the INDICATIONS AND USAGE section.

Aerobic gram-negative microorganisms: Acinetobacter calcoaceticus Enterobacter aerogenes Enterobacter cloacae Escherichia coli Haemophilus influenzae (including ampicillin-resistant and beta-lactamase producing strains) Haemophilus parainfluenzae Klebsiella oxytoca Klebsiella pneumoniae Moraxella catarrhalis (including beta-lactamase producing strains) Morganella morganii Neisseria gonorrhoeae (including penicillinase- and nonpenicillinase-producing strains) Neisseria meningitidis Proteus mirabilis Proteus vulgaris Serratia marcescens

Ceftriaxone is also active against many strains of Pseudomonas aeruginosa.

NOTE: Many strains of the above organisms that are resistant to multiple antibiotics, eg, penicillins, cephalosporins, and aminoglycosides, are susceptible to ceftriaxone.

Aerobic gram-positive microorganisms: Staphylococcus aureus (including penicillinase-producing strains) Staphylococcus epidermidis Streptococcus pneumoniae Streptococcus pyogenes Viridans group streptococci

NOTE: Methicillin-resistant staphylococci are resistant to cephalosporins, including ceftriaxone. Most strains of Group D streptococci and enterococci, eg, Enterococcus (Streptococcus) faecalis, are resistant.

Anaerobic microorganisms: Bacteroides fragilis Clostridium species Peptostreptococcus species

NOTE: Most strains of Clostridium difficile are resistant.

The following in vitro data are available, but their clinical significance is unknown . Ceftriaxone exhibits in vitro minimal inhibitory concentrations (MICs) of ≤1 µg/mL or less against most strains of the following microorganisms, however, the safety and effectiveness of ceftriaxone in treating clinical infections due to these microorganisms have not been established in adequate and well-controlled clinical trials.

Aerobic gram-negative microorganisms: Citrobacter diversus Citrobacter freundii Providencia species (including Providencia rettgeri) Salmonella species (including Salmonella typhi) Shigella species

Aerobic gram-positive microorganisms: Streptococcus agalactiae

Anaerobic microorganisms: Prevotella (Bacteroides) bivius Porphyromonas (Bacteroides) melaninogenicus

Quantitative methods are used to determine antimicrobial minimal inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MICs should be determined using a standardized procedure. Standardized procedures are based on a dilution method (broth or agar) or equivalent with standardized inoculum concentrations and standardized concentrations of ceftriaxone powder. For details of susceptibility test methodologies, the most recent documents of the Clinical and Laboratory Standards Institute (CLSI) for antimicrobial susceptibility testing should be consulted.

The MIC values for aerobic organisms should be interpreted according to the following criteria:

For Enterobacteriaceae:

The following interpretive criteria should be used when testing Haemophilus species using Haemophilus Test Media (HTM).

The absence of resistant strains precludes defining any categories other than "Susceptible". Strains yielding results suggestive of a "Nonsusceptible" category should be submitted to a reference laboratory for further testing.

The following interpretive criteria should be used when testing Neisseria gonorrhoeae when using GC agar base and 1% defined growth supplement.

The following interpretive criteria should be used when testing Neisseria meningitidis on Mueller-Hinton agar with 5% defribrinated sheep blood.

The absence of resistant neisserial strains precludes defining any categories other than "Susceptible". Strains yielding results suggestive of a "Nonsusceptible" category should be submitted to a reference laboratory for further testing.

When testing Staphylococcus aureus (methicillin-susceptible, MSSA) the following interpretive criteria should be applied:

For staphylococcal infections, a daily dose of 2 to 4 grams should be administered to achieve >90% target attainment (see DOSAGE AND ADMINISTRATION ).

The following interpretive criteria should be used when testing Streptococcus pneumoniae using Mueller-Hinton broth with 2 to 5% lysed horse blood:

Meningitis:

Non-meningitis infections:

For β-hemolytic streptococci the following interpretive criteria should be used when testing on cation-adjusted Mueller-Hinton broth with 2 to 5% lysed horse blood:

For the Viridians Group streptococci the following interpretive criteria should be applied:

A report of "Susceptible" indicates that the pathogen is likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable. A report of "Intermediate" indicates that the results should be considered equivocal, and if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where high dosage of the drug can be used. This category also provides a buffer zone which prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of "Resistant" indicates that the pathogen is not likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable; other therapy should be selected.

Standardized susceptibility test procedures require the use of laboratory control microorganisms to control the technical aspects of the laboratory procedures. Standardized ceftriaxone powder should provide the following MIC values:

MIC (µg/mL) Interpretation
≤1
2
≥4
(S) Susceptible
(I) Intermediate
(R) Resistant
MIC (µg/mL) Interpretation
≤2 (S) Susceptible
MIC (µg/mL) Interpretation
≤0.25 (S) Susceptible
MIC (µg/mL) Interpretation
≤0.12 (S) Susceptible
MIC (µg/mL) Interpretation
≤4
8
≥16
(S) Susceptible
(I) Intermediate
(R) Resistant
MIC (µg/mL) Interpretation
≤0.5
1
≥2
(S) Susceptible
(I) Intermediate
(R) Resistant
MIC (µg/mL) Interpretation
≤1
2
≥4
(S) Susceptible
(I) Intermediate
(R) Resistant
MIC (µg/mL) Interpretation
≤0.5 (S) Susceptible
MIC (µg/mL) Interpretation
≤1
2
≥4
(S) Susceptible
(I) Intermediate
(R) Resistant
Microorganism ATCC® # MIC (µg/mL)
Escherichia coli 25922 0.03 - 0.12
Staphylococcus aureus 29213 1 - 8A bimodal distribution of MICs results at the extremes of the acceptable range should be suspect and control validity should be verified with data from other control strains.
Pseudomonas aeruginosa 27853 8 - 64
Haemophilus influenzae 49247 0.06 - 0.25
Neisseria gonorrhoeae 49226 0.004 - 0.015
Streptococcus pneumoniae 49619 0.03 - 0.12

Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. One such standardized procedure requires the use of standardized inoculum concentrations. This procedure uses paper discs impregnated with 30 µg of ceftriaxone to test the susceptibility of microorganisms to ceftriaxone.

Reports from the laboratory providing results of the standard single-disc susceptibility test with a 30 µg ceftriaxone disc should be interpreted according to the following criteria for aerobic organisms:

For Enterobacteriaceae:

When testing Haemophilus influenzae on Haemophilus Test Media (HTM), the following interpretive criteria should be used:

The absence of resistant strains precludes defining any categories other than "Susceptible". Strains yielding results suggestive of a "Nonsusceptible" category should be submitted to a reference laboratory for further testing.

The following interpretive criteria should be used when testing Neisseria gonorrhoeae when using GC agar base and 1% defined growth supplement:

For Neisseria meningitidis, the following disc diffusion criteria apply:

For Staphylococcus aureus (methicillin-susceptible, MSSA), the following interpretive criteria apply:

The following interpretive criteria should be used when testing β-hemolytic streptococci using Mueller-Hinton agar supplemented with 5% sheep blood incubated in 5% CO:

For the Viridians Group streptococci the following criteria apply:

Interpretation should be as stated above for results using dilution techniques. Interpretation involves correlation of the diameter obtained in the disc test with the MIC for ceftriaxone.

Disc diffusion interpretive criteria for ceftriaxone discs against Streptococcus pneumoniae are not available, however, isolates of pneumococci with oxacillin zone diameters of >20 mm are susceptible (MIC ≤0.06 µg/mL) to penicillin and can be considered susceptible to ceftriaxone. Streptococcus pneumoniae isolates should not be reported as penicillin (ceftriaxone) resistant or intermediate based solely on an oxacillin zone diameter of ≤19 mm. The ceftriaxone MIC should be determined for those isolates with oxacillin zone diameters ≤19 mm.

As with standardized dilution techniques, diffusion methods require the use of laboratory control microorganisms that are used to control the technical aspects of the laboratory procedures. For the diffusion technique, the 30 µg ceftriaxone disc should provide the following zone diameters in these laboratory test quality control strains:

Zone Diameter (mm) Interpretation
≥23
20-22
≤19
(S) Susceptible
(I) Intermediate
(R) Resistant
Zone Diameter (mm) Interpretation
≥26 (S) Susceptible
Zone Diameter (mm) Interpretation
≥35 (S) Susceptible
Zone Diameter (mm) Interpretation
≥34 (S) Susceptible
Zone Diameter (mm) Interpretation
≥21
14-20
≤13
(S) Susceptible
(I) Intermediate
(R) Resistant
Zone Diameter (mm) Interpretation
≥24 (S) Susceptible
Zone Diameter (mm) Interpretation
≥27
25-26
≤24
(S) Susceptible
(I) Intermediate
(R) Resistant
Microorganism ATCC®# Zone Diameter Ranges (mm)
Escherichia coli 25922 29 - 35
Staphylococcus aureus 29213 22 - 28
Pseudomonas aeruginosa 27853 17 - 23
Haemophilus influenzae 49247 31 - 39
Neisseria gonorrhoeae 49226 39 - 51
Streptococcus pneumoniae 49619 30 - 35

For anaerobic bacteria, the susceptibility to ceftriaxone as MICs can be determined by standardized test methods. The MIC values obtained should be interpreted according to the following criteria:

As with other susceptibility techniques, the use of laboratory control microorganisms is required to control the technical aspects of the laboratory standardized procedures. Standardized ceftriaxone powder should provide the following MIC values for the indicated standardized anaerobic dilution testing method:

MIC (µg/mL) Interpretation
≤16
32
≥64
(S) Susceptible
(I) Intermediate
(R) Resistant
Method Microorganism ATCC® # MIC (µg/mL)
Agar Bacteroides fragilis 25285 32 - 128
  Bacteroides thetaiotaomicron 29741 64 - 256

Before instituting treatment with Rocephin, appropriate specimens should be obtained for isolation of the causative organism and for determination of its susceptibility to the drug. Therapy may be instituted prior to obtaining results of susceptibility testing.

To reduce the development of drug-resistant bacteria and maintain the effectiveness of Rocephin and other antibacterial drugs, Rocephin should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

Rocephin is indicated for the treatment of the following infections when caused by susceptible organisms:

LOWER RESPIRATORY TRACT INFECTIONS caused by Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, Haemophilus parainfluenzae, Klebsiella pneumoniae, Escherichia coli, Enterobacter aerogenes, Proteus mirabilis or Serratia marcescens.

ACUTE BACTERIAL OTITIS MEDIA caused by Streptococcus pneumoniae, Haemophilus influenzae (including beta-lactamase producing strains) or Moraxella catarrhalis (including beta-lactamase producing strains).

NOTE: In one study lower clinical cure rates were observed with a single dose of Rocephin compared to 10 days of oral therapy. In a second study comparable cure rates were observed between single dose Rocephin and the comparator. The potentially lower clinical cure rate of Rocephin should be balanced against the potential advantages of parenteral therapy (see CLINICAL STUDIES ).

SKIN AND SKIN STRUCTURE INFECTIONS caused by Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, Viridans group streptococci, Escherichia coli, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Proteus mirabilis, Morganella morganii, Pseudomonas aeruginosa, Serratia marcescens, Acinetobacter calcoaceticus, Bacteroides fragilis or Peptostreptococcus species.

URINARY TRACT INFECTIONS (complicated and uncomplicated) caused by Escherichia coli, Proteus mirabilis, Proteus vulgaris, Morganella morganii or Klebsiella pneumoniae.

UNCOMPLICATED GONORRHEA (cervical/urethral and rectal) caused by Neisseria gonorrhoeae, including both penicillinase- and nonpenicillinase-producing strains, and pharyngeal gonorrhea caused by nonpenicillinase-producing strains of Neisseria gonorrhoeae.

PELVIC INFLAMMATORY DISEASE caused by Neisseria gonorrhoeae. Rocephin, like other cephalosporins, has no activity against Chlamydia trachomatis. Therefore, when cephalosporins are used in the treatment of patients with pelvic inflammatory disease and Chlamydia trachomatis is one of the suspected pathogens, appropriate antichlamydial coverage should be added.

BACTERIAL SEPTICEMIA caused by Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli, Haemophilus influenzae or Klebsiella pneumoniae.

BONE AND JOINT INFECTIONS caused by Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae or Enterobacter species.

INTRA-ABDOMINAL INFECTIONS caused by Escherichia coli, Klebsiella pneumoniae, Bacteroides fragilis, Clostridium species (Note: most strains of Clostridium difficile are resistant) or Peptostreptococcus species.

MENINGITIS caused by Haemophilus influenzae, Neisseria meningitidis or Streptococcus pneumoniae. Rocephin has also been used successfully in a limited number of cases of meningitis and shunt infection caused by Staphylococcus epidermidis and Escherichia coli.

The preoperative administration of a single 1 gm dose of Rocephin may reduce the incidence of postoperative infections in patients undergoing surgical procedures classified as contaminated or potentially contaminated (eg, vaginal or abdominal hysterectomy or cholecystectomy for chronic calculous cholecystitis in high-risk patients, such as those over 70 years of age, with acute cholecystitis not requiring therapeutic antimicrobials, obstructive jaundice or common duct bile stones) and in surgical patients for whom infection at the operative site would present serious risk (eg, during coronary artery bypass surgery). Although Rocephin has been shown to have been as effective as cefazolin in the prevention of infection following coronary artery bypass surgery, no placebo-controlled trials have been conducted to eva luate any cephalosporin antibiotic in the prevention of infection following coronary artery bypass surgery.

When administered prior to surgical procedures for which it is indicated, a single 1 gm dose of Rocephin provides protection from most infections due to susceptible organisms throughout the course of the procedure.

Rocephin is contraindicated in patients with known allergy to the cephalosporin class of antibiotics.

Hyperbilirubinemic neonates, especially prematures, should not be treated with Rocephin. In vitro studies have shown that ceftriaxone can displace bilirubin from its binding to serum albumin, leading to a possible risk of bilirubin encephalopathy in these patients.

Rocephin is contraindicated in neonates if they require (or are expected to require) treatment with calcium-containing IV solutions, including continuous calcium-containing infusions such as parenteral nutrition because of the risk of precipitation of ceftriaxone-calcium (see CLINICAL PHARMACOLOGY, WARNINGS and DOSAGE AND ADMINISTRATION).

A small number of cases of fatal outcomes in which a crystalline material was observed in the lungs and kidneys at autopsy have been reported in neonates receiving Rocephin and calcium-containing fluids. In some of these cases, the same intravenous infusion line was used for both Rocephin and calcium-containing fluids and in some a precipitate was observed in the intravenous infusion line. At least one fatality has been reported in a neonate in whom Rocephin and calcium-containing fluids were administered at different time points via different intravenous lines; no crystalline material was observed at autopsy in this neonate. There have been no similar reports in patients other than neonates.

BEFORE THERAPY WITH ROCEPHIN IS INSTITUTED, CAREFUL INQUIRY SHOULD BE MADE TO DETERMINE WHETHER THE PATIENT HAS HAD PREVIOUS HYPERSENSITIVITY REACTIONS TO CEPHALOSPORINS, PENICILLINS OR OTHER DRUGS. THIS PRODUCT SHOULD BE GIVEN CAUTIOUSLY TO PENICILLIN-SENSITIVE PATIENTS. ANTIBIOTICS SHOULD BE ADMINISTERED WITH CAUTION TO ANY PATIENT WHO HAS DEMONSTRATED SOME FORM OF ALLERGY, PARTICULARLY TO DRUGS. SERIOUS ACUTE HYPERSENSITIVITY REACTIONS MAY REQUIRE THE USE OF SUBCUTANEOUS EPINEPHRINE AND OTHER EMERGENCY MEASURES.

As with other cephalosporins, anaphylactic reactions with fatal outcome have been reported, even if a patient is not known to be allergic or previously exposed.

Do not use diluents containing calcium, such as Ringer's solution or Hartmann's solution, to reconstitute Rocephin vials or to further dilute a reconstituted vial for IV administration because a precipitate can form. Precipitation of ceftriaxone-calcium can also occur when Rocephin is mixed with calcium-containing solutions in the same IV administration line. Rocephin must not be administered simultaneously with calcium-containing IV solutions, including continuous calcium-containing infusions such as parenteral nutrition via a Y-site. However, in patients other than neonates, Rocephin and calcium-containing solutions may be administered sequentially of one another if the infusion lines are thoroughly flushed between infusions with a compatible fluid. In vitro studies using adult and neonatal plasma from umbilical cord blood demonstrated that neonates have an increased risk of precipitation of ceftriaxone-calcium (see CLINICAL PHARMACOLOGY, CONTRAINDICATIONS and DOSAGE AND ADMINISTRATION).

Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including Rocephin, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile.

C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.

If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may nee

Manufacturer

Genentech, Inc.

Active Ingredients

Source

  • U.S. National Library of Medicine
  • DailyMed
  •  Last Updated: 2nd of March 2011
以下是“全球医药”详细资料
Tags: 责任编辑:admin
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到QQ空间
分享到: 
上一篇Ambien (zolpidem tartrate) 下一篇ROCEPHIN(ceftriaxone sodium) in..

相关栏目

最新文章

图片主题

热门文章

推荐文章

相关文章

广告位