设为首页 加入收藏

TOP

TOPAMAX(topiramate) tablet, coated
2014-03-14 22:24:29 来源: 作者: 【 】 浏览:319次 评论:0
HIGHLIGHTS OF PRESCRIBING INFORMATION
These highlights do not include all the information needed to use TOPAMAX® safely and effectively. See full prescribing information for TOPAMAX®

TOPAMAX® (topiramate) TABLETS
Initial U.S. Approval: 1996

 
 RECENT MAJOR CHANGES
 
• Warnings and Precautions (5.8) [12/2009]
 INDICATIONS AND USAGE
 

TOPAMAX® is an antiepileptic (AED) agent indicated for:

  • Monotherapy epilepsy: Initial monotherapy in patients ≥10 years of age with partial onset or primary generalized tonic-clonic seizures (1.1).
  • Adjunctive therapy epilepsy: Adjunctive therapy for adults and pediatric patients (2 to 16 years of age) with partial onset seizures or primary generalized tonic-clonic seizures, and in patients ≥2 years of age with seizures associated with Lennox-Gastaut syndrome (LGS) (1.2).
  • Migraine: Treatment for adults for prophylaxis of migraine headache (1.3).
 DOSAGE AND ADMINISTRATION
 

See DOSAGE AND ADMINISTRATION, Epilepsy: Adjunctive Therapy Use for additional details (2.1).

  Initial Dose Titration Recommended Dose
Epilepsy monotherapy: adults and pediatric patients ≥10 years (2.1) 50 mg/day in two divided doses The dosage should be increased weekly by increments of 50 mg for the first 4 weeks then 100 mg for weeks 5 to 6. 400 mg/day in two divided doses
Epilepsy adjunctive therapy: adults with partial onset seizures or LGS (2.1) 25 to 50 mg/day The dosage should be increased weekly to an effective dose by increments of 25 to 50 mg. 200–400 mg/day in two divided doses
Epilepsy adjunctive therapy: adults with primary generalized tonic-clonic seizures (2.1) 25 to 50 mg/day The dosage should be increased weekly to an effective dose by increments of 25 to 50 mg. 400 mg/day in two divided doses
Epilepsy adjunctive therapy: pediatric patients with partial onset seizures, primary generalized tonic-clonic seizures or LGS (2.1) 25 mg/day (or less, based on a range of 1 to 3 mg/kg/day) nightly for the first week The dosage should be increased at 1- or 2-week intervals by increments of 1 to 3 mg/kg/day (administered in two divided doses). Dose titration should be guided by clinical outcome. 5 to 9 mg/kg/day in two divided doses
Migraine (2.3) 25 mg/day administered nightly for the first week The dosage should be increased weekly by increments of 25 mg. Dose and titration should be guided by clinical outcome. 100 mg/day administered in two divided doses
 DOSAGE FORMS AND STRENGTHS
 
  • Tablets: 25 mg, 50 mg, 100 mg, and 200 mg (3)
  • Sprinkle Capsules: 15 mg and 25 mg (3)
 CONTRAINDICATIONS
 

None.

 WARNINGS AND PRECAUTIONS
 
  • Acute myopia and secondary angle closure glaucoma: Untreated elevated intraocular pressure can lead to permanent visual loss. The primary treatment to reverse symptoms is discontinuation of TOPAMAX® as rapidly as possible (5.1).
  • Oligohidrosis and hyperthermia: Monitor decreased sweating and increased body temperature, especially in pediatric patients (5.2).
  • Suicidal behavior and ideation: Antiepileptic drugs increase the risk of suicidal behavior or ideation (5.3).
  • Metabolic acidosis: Baseline and periodic measurement of serum bicarbonate is recommended. Consider dose reduction or discontinuation of TOPAMAX® if clinically appropriate (5.4).
  • Cognitive/neuropsychiatric: TOPAMAX® may cause cognitive dysfunction. Patients should use caution when operating machinery including automobiles. Depression and mood problems may occur in epilepsy and migraine populations (5.5).
  • Withdrawal of AEDs: Withdrawal of TOPAMAX® should be done gradually (5.6).
  • Hyperammonemia and encephalopathy associated with or without concomitant valproic acid use: Patients with inborn errors of metabolism or reduced mitochondrial activity may have an increased risk of hyper-ammonemia. Measure ammonia if encephalopathic symptoms occur (5.8).
  • Kidney stones: Use with other carbonic anhydrase inhibitors, other drugs causing metabolic acidosis, or in patients on a ketogenic diet should be avoided (5.9).
 ADVERSE REACTIONS
 

The most common (≥5% more frequent than placebo or low dose topiramate in monotherapy) adverse reactions in controlled, epilepsy clinical trials were paresthesia, anorexia, weight decrease, fatigue, dizziness, somnolence, nervousness, psychomotor slowing, difficulty with memory, difficulty with concentration/attention, and confusion. The most common (≥5% more frequent than placebo) adverse reactions in controlled, migraine clinical trials were paresthesia and taste perversion.


TO REPORT SUSPECTED ADVERSE REACTIONS, CONTACT ORTHO-MCNEIL NEUROLOGICS AT 1-888-526-7736 OR FDA AT 1-800-FDA-1088 OR WWW.FDA.GOV/MEDWATCH.

 DRUG INTERACTIONS
 

Summary of antiepileptic drug (AED) interactions with TOPAMAX® (7.1).

AED Co-administered AED Concentration TOPAMAX Concentration
NC = Less than 10% change in plasma concentration.
NE = Not eva luated
*
= Plasma concentration increased 25% in some patients, generally those on a twice a day dosing regimen of phenytoin.
= Is not administered but is an active metabolite of carbamazepine.
Phenytoin NC or 25% increase* 48% decrease
Carbamazepine (CBZ) NC 40% decrease
CBZ epoxide† NC NE
Valproic acid 11% decrease 14% decrease
Phenobarbital NC NE
Primidone NC NE
Lamotrigine NC at TPM doses up to 400 mg/day 13% decrease
  • Concomitant administration of valproic acid and topiramate has been associated with hyperammonemia with and without encephalopathy (5.7).
  • Oral contraceptives: Decreased contraceptive efficacy and increased breakthrough bleeding should be considered, especially at doses greater than 200 mg/day (7.3).
  • Metformin is contraindicated with metabolic acidosis, a possible effect of topiramate (7.4)
  • Lithium levels should be monitored when co-administered with high-dose topiramate (7.5)
  • Other Carbonic Anhydrase Inhibitors: monitor the patient for the appearance or worsening of metabolic acidosis (7.6)
 USE IN SPECIFIC POPULATIONS
 
  • Renal Impairment: In renally impaired patients (creatinine clearance less than 70 mL/min/1.73 m2), one half of the adult dose is recommended (2.4).
  • Patients Undergoing Hemodialysis: Topiramate is cleared by hemodialysis. Dosage adjustment is necessary to avoid rapid drops in topiramate plasma concentration during hemodialysis (2.6).
  • Pregnancy: based on animal data, may cause fetal harm. To enroll in the North American Antiepileptic Drug Pregnancy Registry call 1-888-233-2334 (toll free) (8.1).
  • Geriatric Use: Dosage adjustment may be necessary for elderly with impaired renal function (8.5).

See 17 for PATIENT COUNSELING INFORMATION and the FDA-approved Medication Guide

Revised: 12/2010

Back to Highlights and Tabs
FULL PRESCRIBING INFORMATION: CONTENTS*
*Sections or subsections omitted from the full prescribing information are not listed

 

1 INDICATIONS AND USAGE

1.1 Monotherapy Epilepsy

1.2 Adjunctive Therapy Epilepsy

1.3 Migraine

2 DOSAGE AND ADMINISTRATION

2.1 Epilepsy

2.2 Migraine

2.3 Administration of TOPAMAX® Sprinkle Capsules

2.4 Patients with Renal Impairment

2.5 Geriatric Patients (Ages 65 Years and Over)

2.6 Patients Undergoing Hemodialysis

2.7 Patients with Hepatic Disease

3 DOSAGE FORMS AND STRENGTHS

4 CONTRAINDICATIONS

5 WARNINGS AND PRECAUTIONS

5.1 Acute Myopia and Secondary Angle Closure Glaucoma

5.2 Oligohidrosis and Hyperthermia

5.3 Suicidal Behavior and Ideation

5.4 Metabolic Acidosis

5.5 Cognitive/Neuropsychiatric Adverse Reactions

5.6 Withdrawal of Antiepileptic Drugs (AEDs)

5.7 Sudden Unexplained Death in Epilepsy (SUDEP)

5.8 Hyperammonemia and Encephalopathy (Without and With Concomitant Valproic Acid [VPA] Use)

5.9 Kidney Stones

5.10 Paresthesia

5.11 Adjustment of Dose in Renal Failure

5.12 Decreased Hepatic Function

5.13 Monitoring: Laboratory Tests

6 ADVERSE REACTIONS

6.1 Monotherapy Epilepsy

6.2 Adjunctive Therapy Epilepsy

6.3 Incidence in Epilepsy Controlled Clinical Trials – Adjunctive Therapy – Partial Onset Seizures, Primary Generalized Tonic-Clonic Seizures, and Lennox-Gastaut Syndrome

6.4 Other Adverse Reactions Observed During Double-Blind Epilepsy Adjunctive Therapy Trials

6.5 Incidence in Study 119 – Add-On Therapy– Adults with Partial Onset Seizures

6.6 Other Adverse Reactions Observed During All Epilepsy Clinical Trials

6.7 Migraine

6.8 Other Adverse Reactions Observed During Migraine Clinical Trials

6.9 Postmarketing and Other Experience

7 DRUG INTERACTIONS

7.1 Antiepileptic Drugs

7.2 CNS Depressants

7.3 Oral Contraceptives

7.4 Metformin

7.5 Lithium

7.6 Other Carbonic Anhydrase Inhibitors

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

8.2 Labor and Delivery

8.3 Nursing Mothers

8.4 Pediatric Use

8.5 Geriatric Use

8.6 Race and Gender Effects

8.7 Renal Impairment

8.8 Patients Undergoing Hemodialysis

9 DRUG ABUSE AND DEPENDENCE

9.1 Controlled Substance

9.2 Abuse

9.3 Dependence

10 OVERDOSAGE

11 DESCRIPTION

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

12.2 Pharmacodynamics

12.3 Pharmacokinetics

12.4 Special Populations

12.5 Drug-Drug Interactions

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

14 CLINICAL STUDIES

14.1 Monotherapy Epilepsy Controlled Trial

14.2 Migraine Prophylaxis

16 HOW SUPPLIED/STORAGE AND HANDLING

17 PATIENT COUNSELING INFORMATION

17.1 Eye Disorders

17.2 Oligohydrosis and Hyperthermia

17.3 Suicidal Behavior and Ideation

17.4 Metabolic Acidosis

17.5 Interference with Cognitive and Motor Performance

17.6 Hyperammonemia and Encephalopathy

17.7 Kidney Stones

17.8 Use in Pregnancy

Principal display panel

Principal display panel

 


FULL PRESCRIBING INFORMATION

1 INDICATIONS AND USAGE

1.1 Monotherapy Epilepsy

TOPAMAX® (topiramate) Tablets and TOPAMAX® (topiramate capsules) Sprinkle Capsules are indicated as initial monotherapy in patients 10 years of age and older with partial onset or primary generalized tonic-clonic seizures. Effectiveness was demonstrated in a controlled trial in patients with epilepsy who had no more than 2 seizures in the 3 months prior to enrollment. Safety and effectiveness in patients who were converted to monotherapy from a previous regimen of other anticonvulsant drugs have not been established in controlled trials [see Clinical Studies (14.1)].

1.2 Adjunctive Therapy Epilepsy

TOPAMAX® (topiramate) Tablets and TOPAMAX® (topiramate capsules) Sprinkle Capsules are indicated as adjunctive therapy for adults and pediatric patients ages 2 to 16 years with partial onset seizures or primary generalized tonic-clonic seizures, and in patients 2 years of age and older with seizures associated with Lennox-Gastaut syndrome [see Clinical Studies (14.2)].

1.3 Migraine

TOPAMAX® (topiramate) Tablets and TOPAMAX® (topiramate capsules) Sprinkle Capsules are indicated for adults for the prophylaxis of migraine headache [see Clinical Studies (14.3)]. The usefulness of TOPAMAX® in the acute treatment of migraine headache has not been studied.

2 DOSAGE AND ADMINISTRATION

2.1 Epilepsy

In the controlled adjunctive (i.e., add-on) trials, no correlation has been demonstrated between trough plasma concentrations of topiramate and clinical efficacy. No evidence of tolerance has been demonstrated in humans. Doses above 400 mg/day (600, 800 or 1,000 mg/day) have not been shown to improve responses in dose-response studies in adults with partial onset seizures.

It is not necessary to monitor topiramate plasma concentrations to optimize TOPAMAX® therapy. On occasion, the addition of TOPAMAX® to phenytoin may require an adjustment of the dose of phenytoin to achieve optimal clinical outcome. Addition or withdrawal of phenytoin and/or carbamazepine during adjunctive therapy with TOPAMAX® may require adjustment of the dose of TOPAMAX®. Because of the bitter taste, tablets should not be broken.

TOPAMAX® can be taken without regard to meals.

Monotherapy Use

The recommended dose for topiramate monotherapy in adults and pediatric patients 10 years of age and older is 400 mg/day in two divided doses. Approximately 58% of patients randomized to 400 mg/day achieved this maximal dose in the monotherapy controlled trial; the mean dose achieved in the trial was 275 mg/day. The dose should be achieved by titration according to the following schedule:

  Morning Dose Evening Dose
Week 1 25 mg 25 mg
Week 2 50 mg 50 mg
Week 3 75 mg 75 mg
Week 4 100 mg 100 mg
Week 5 150 mg 150 mg
Week 6 200 mg 200 mg

Adjunctive Therapy Use

Adults (17 Years of Age and Over) - Partial Onset Seizures, Primary Generalized Tonic-Clonic Seizures, or Lennox-Gastaut Syndrome

The recommended total daily dose of TOPAMAX® as adjunctive therapy in adults with partial onset seizures is 200 to 400 mg/day in two divided doses, and 400 mg/day in two divided doses as adjunctive treatment in adults with primary generalized tonic-clonic seizures. It is recommended that therapy be initiated at 25 to 50 mg/day followed by titration to an effective dose in increments of 25 to 50 mg/day every week. Titrating in increments of 25 mg/day every week may delay the time to reach an effective dose. Daily doses above 1,600 mg have not been studied.

In the study of primary generalized tonic-clonic seizures the initial titration rate was slower than in previous studies; the assigned dose was reached at the end of 8 weeks [see Clinical Studies (14.1)].

Pediatric Patients (Ages 2 – 16 Years) – Partial Onset Seizures, Primary Generalized Tonic-Clonic Seizures, or Lennox-Gastaut Syndrome

The recommended total daily dose of TOPAMAX® (topiramate) as adjunctive therapy for pediatric patients with partial onset seizures, primary generalized tonic-clonic seizures, or seizures associated with Lennox-Gastaut syndrome is approximately 5 to 9 mg/kg/day in two divided doses. Titration should begin at 25 mg/day (or less, based on a range of 1 to 3 mg/kg/day) nightly for the first week. The dosage should then be increased at 1- or 2 week intervals by increments of 1 to 3 mg/kg/day (administered in two divided doses), to achieve optimal clinical response. Dose titration should be guided by clinical outcome.

In the study of primary generalized tonic-clonic seizures the initial titration rate was slower than in previous studies; the assigned dose of 6 mg/kg/day was reached at the end of 8 weeks [see Clinical Studies (14.1)].

2.2 Migraine

The recommended total daily dose of TOPAMAX® as treatment for adults for prophylaxis of migraine headache is 100 mg/day administered in two divided doses. The recommended titration rate for topiramate for migraine prophylaxis to 100 mg/day is:

  Morning Dose Evening Dose
Week 1 None 25 mg
Week 2 25 mg 25 mg
Week 3 25 mg 50 mg
Week 4 50 mg 50 mg

Dose and titration rate should be guided by clinical outcome. If required, longer intervals between dose adjustments can be used.

TOPAMAX® can be taken without regard to meals.

2.3 Administration of TOPAMAX® Sprinkle Capsules

TOPAMAX® (topiramate capsules) Sprinkle Capsules may be swallowed whole or may be administered by carefully opening the capsule and sprinkling the entire contents on a small amount (teaspoon) of soft food. This drug/food mixture should be swallowed immediately and not chewed. It should not be stored for future use.

2.4 Patients with Renal Impairment

In renally impaired subjects (creatinine clearance less than 70 mL/min/1.73 m2), one-half of the usual adult dose is recommended. Such patients will require a longer time to reach steady-state at each dose.

2.5 Geriatric Patients (Ages 65 Years and Over)

Dosage adjustment may be indicated in the elderly patient when impaired renal function (creatinine clearance rate <70 mL/min/1.73 m2) is evident [see Clinical Pharmacology (12.3)].

2.6 Patients Undergoing Hemodialysis

Topiramate is cleared by hemodialysis at a rate that is 4 to 6 times greater than a normal individual. Accordingly, a prolonged period of dialysis may cause topiramate concentration to fall below that required to maintain an anti-seizure effect. To avoid rapid drops in topiramate plasma concentration during hemodialysis, a supplemental dose of topiramate may be required. The actual adjustment should take into account 1) the duration of dialysis period, 2) the clearance rate of the dialysis system being used, and 3) the effective renal clearance of topiramate in the patient being dialyzed.

2.7 Patients with Hepatic Disease

In hepatically impaired patients, topiramate plasma concentrations may be increased. The mechanism is not well understood.

3 DOSAGE FORMS AND STRENGTHS

TOPAMAX® (topiramate) Tablets are available as debossed, coated, round tablets in the following strengths and colors:

25 mg cream (debossed "OMN" on one side; "25" on the other)

50 mg light-yellow (debossed "OMN" on one side; "50" on the other)

100 mg yellow (debossed "OMN" on one side; "100" on the other)

200 mg salmon (debossed "OMN" on one side; "200" on the other)

TOPAMAX® (topiramate capsules) Sprinkle Capsules contain small, white to off white spheres. The gelatin capsules are white and clear.

They are marked as follows:

15 mg capsule with "TOP" and "15 mg" on the side

25 mg capsule with "TOP" and "25 mg" on the side

4 CONTRAINDICATIONS

None.

5 WARNINGS AND PRECAUTIONS

5.1 Acute Myopia and Secondary Angle Closure Glaucoma

A syndrome consisting of acute myopia associated with secondary angle closure glaucoma has been reported in patients receiving TOPAMAX®. Symptoms include acute onset of decreased visual acuity and/or ocular pain. Ophthalmologic findings can include myopia, anterior chamber shallowing, ocular hyperemia (redness) and increased intraocular pressure. Mydriasis may or may not be present. This syndrome may be associated with supraciliary effusion resulting in anterior displacement of the lens and iris, with secondary angle closure glaucoma. Symptoms typically occur within 1 month of initiating TOPAMAX® therapy. In contrast to primary narrow angle glaucoma, which is rare under 40 years of age, secondary angle closure glaucoma associated with topiramate has been reported in pediatric patients as well as adults. The primary treatment to reverse symptoms is discontinuation of TOPAMAX® as rapidly as possible, according to the judgment of the treating physician. Other measures, in conjunction with discontinuation of TOPAMAX®, may be helpful.

Elevated intraocular pressure of any etiology, if left untreated, can lead to serious sequelae including permanent vision loss.

5.2 Oligohidrosis and Hyperthermia

Oligohidrosis (decreased sweating), infrequently resulting in hospitalization, has been reported in association with TOPAMAX® use. Decreased sweating and an elevation in body temperature above normal characterized these cases. Some of the cases were reported after exposure to elevated environmental temperatures.

The majority of the reports have been in pediatric patients. Patients, especially pediatric patients, treated with TOPAMAX® should be monitored closely for evidence of decreased sweating and increased body temperature, especially in hot weather. Caution should be used when TOPAMAX® is prescribed with other drugs that predispose patients to heat-related disorders; these drugs include, but are not limited to, other carbonic anhydrase inhibitors and drugs with anticholinergic activity.

5.3 Suicidal Behavior and Ideation

Antiepileptic drugs (AEDs), including TOPAMAX®, increase the risk of suicidal thoughts or behavior in patients taking these drugs for any indication. Patients treated with any AED for any indication should be monitored for the emergence or worsening of depression, suicidal thoughts or behavior, and/or any unusual changes in mood or behavior.

Pooled analyses of 199 placebo-controlled clinical trials (mono- and adjunctive therapy) of 11 different AEDs showed that patients randomized to one of the AEDs had approximately twice the risk (adjusted Relative Risk 1.8, 95% CI:1.2, 2.7) of suicidal thinking or behavior compared to patients randomized to placebo. In these trials, which had a median treatment duration of 12 weeks, the estimated incidence rate of suicidal behavior or ideation among 27,863 AED-treated patients was 0.43%, compared to 0.24% among 16,029 placebo-treated patients, representing an increase of approximately one case of suicidal thinking or behavior for every 530 patients treated. There were four suicides in drug-treated patients in the trials and none in placebo-treated patients, but the number is too small to allow any conclusion about drug effect on suicide.

The increased risk of suicidal thoughts or behavior with AEDs was observed as early as one week after starting drug treatment with AEDs and persisted for the duration of treatment assessed. Because most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behavior beyond 24 weeks could not be assessed.

The risk of suicidal thoughts or behavior was generally consistent among drugs in the data analyzed. The finding of increased risk with AEDs of varying mechanisms of action and across a range of indications suggests that the risk applies to all AEDs used for any indication. The risk did not vary substantially by age (5 to 100 years) in the clinical trials analyzed.

Table 1 shows absolute and relative risk by indication for all eva luated AEDs.

Table 1: Risk by Indication for Antiepileptic Drugs in the Pooled Analysis
Indication Placebo Patients with Events per 1000 Patients Drug Patients with Events per 1000 Patients Relative Risk: Incidence of Events in Drug Patients/Incidence in Placebo Patients Risk Difference: Additional Drug Patients with Events per 1000 Patients
Epilepsy 1.0 3.4 3.5 2.4
Psychiatric 5.7 8.5 1.5 2.9
Other 1.0 1.8 1.9 0.9
Total 2.4 4.3 1.8 1.9

The relative risk for suicidal thoughts or behavior was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indications.

Anyone considering prescribing TOPAMAX® or any other AED must balance the risk of suicidal thoughts or behavior with the risk of untreated illness. Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behavior. Should suicidal thoughts and behavior emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated.

Patients, their caregivers, and families should be informed that AEDs increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of the signs and symptoms of depression, any unusual changes in mood or behavior or the emergence of suicidal thoughts, behavior or thoughts about self-harm. Behaviors of concern should be reported immediately to healthcare providers.

5.4 Metabolic Acidosis

Hyperchloremic, non-anion gap, metabolic acidosis (i.e., decreased serum bicarbonate below the normal reference range in the absence of chronic respiratory alkalosis) is associated with topiramate treatment. This metabolic acidosis is caused by renal bicarbonate loss due to the inhibitory effect of topiramate on carbonic anhydrase. Such electrolyte imbalance has been observed with the use of topiramate in placebo-controlled clinical trials and in the post-marketing period. Generally, topiramate-induced metabolic acidosis occurs early in treatment although cases can occur at any time during treatment. Bicarbonate decrements are usually mild-moderate (average decrease of 4 mEq/L at daily doses of 400 mg in adults and at approximately 6 mg/kg/day in pediatric patients); rarely, patients can experience severe decrements to values below 10 mEq/L. Conditions or therapies that predispose patients to acidosis (such as renal disease, severe respiratory disorders, status epilepticus, diarrhea, ketogenic diet or specific drugs) may be additive to the bicarbonate lowering effects of topiramate.

In adults, the incidence of persistent treatment-emergent decreases in serum bicarbonate (levels of <20 mEq/L at two consecutive visits or at the final visit) in controlled clinical trials for adjunctive treatment of epilepsy was 32% for 400 mg/day, and 1% for placebo. Metabolic acidosis has been observed at doses as low as 50 mg/day. The incidence of persistent treatment-emergent decreases in serum bicarbonate in adults in the epilepsy controlled clinical trial for monotherapy was 15% for 50 mg/day and 25% for 400 mg/day. The incidence of a markedly abnormally low serum bicarbonate (i.e., absolute value <17 mEq/L and >5 mEq/L decrease from pretreatment) in the adjunctive therapy trials was 3% for 400 mg/day, and 0% for placebo and in the monotherapy trial was 1% for 50 mg/day and 7% for 400 mg/day. Serum bicarbonate levels have not been systematically eva luated at daily doses greater than 400 mg/day.

In pediatric patients (2–16 years of age), the incidence of persistent treatment-emergent decreases in serum bicarbonate in placebo-controlled trials for adjunctive treatment of Lennox-Gastaut syndrome or refractory partial onset seizures was 67% for TOPAMAX® (at approximately 6 mg/kg/day), and 10% for placebo. The incidence of a markedly abnormally low serum bicarbonate (i.e., absolute value <17 mEq/L and >5 mEq/L decrease from pretreatment) in these trials was 11% for TOPAMAX® and 0% for placebo. Cases of moderately severe metabolic acidosis have been reported in patients as young as 5 months old, especially at daily doses above 5 mg/kg/day.

Although not approved for use in patients under 2 years of age with partial onset seizures, a controlled trial that examined this population revealed that topiramate produced a metabolic acidosis that is notably greater in magnitude than that observed in controlled trials in older children and adults. The mean treatment difference (25 mg/kg/d topiramate-placebo) was -5.9 mEq/L for bicarbonate. The incidence of metabolic acidosis (defined by a serum bicarbonate <20 mEq/L) was 0% for placebo, 30% for 5 mg/kg/d, 50% for 15 mg/kg/d, and 45% for 25 mg/kg/d [see Pediatric Use (8.4)].

In pediatric patients (10 years up to 16 years of age), the incidence of persistent treatment-emergent decreases in serum bicarbonate in the epilepsy controlled clinical trial for monotherapy was 7% for 50 mg/day and 20% for 400 mg/day. The incidence of a markedly abnormally low serum bicarbonate (i.e., absolute value <17 mEq/L and >5 mEq/L decrease from pretreatment) in this trial was 4% for 50 mg/day and 4% for 400 mg/day. The incidence of persistent treatment-emergent decreases in serum bicarbonate in placebo-controlled trials for adults for prophylaxis of migraine was 44% for 200 mg/day, 39% for 100 mg/day, 23% for 50 mg/day, and 7% for placebo. The incidence of a markedly abnormally low serum bicarbonate (i.e., absolute value <17 mEq/L and >5 mEq/L decrease from pretreatment) in these trials was 11% for 200 mg/day, 9% for 100 mg/day, 2% for 50 mg/day, and <1% for placebo.

Some manifestations of acute or chronic metabolic acidosis may include hyperventilation, nonspecific symptoms such as fatigue and anorexia, or more severe sequelae including cardiac arrhythmias or stupor. Chronic, untreated metabolic acidosis may increase the risk for nephrolithiasis or nephrocalcinosis, and may also result in osteomalacia (referred to as rickets in pediatric patients) and/or osteoporosis with an increased risk for fractures. Chronic metabolic acidosis in pediatric patients may also reduce growth rates. A reduction in growth rate may eventually decrease the maximal height achieved. The effect of topiramate on growth and bone-related sequelae has not been systematically investigated in long-term, placebo-controlled trials. Long-term, open-label treatment of infants/toddlers, with intractable partial epilepsy, for up to 1 year, showed reductions from baseline in Z SCORES for length, weight, and head circumference compared to age and sex-matched normative data, although these patients with epilepsy are likely to have different growth rates than normal infants. Reductions in Z SCORES for length and weight were correlated to the degree of acidosis [see Pediatric Use (8.4)].

Measurement of baseline and periodic serum bicarbonate during topiramate treatment is recommended. If metabolic acidosis develops and persists, consideration should be given to reducing the dose or discontinuing topiramate (using dose tapering). If the decision is made to continue patients on topiramate in the face of persistent acidosis, alkali treatment should be considered.

5.5 Cognitive/Neuropsychiatric Adverse Reactions

Adverse reactions most often associated with the use of TOPAMAX® were related to the central nervous system and were observed in both the epilepsy and migraine populations. In adults, the most frequent of these can be classified into three general categories: 1) Cognitive-related dysfunction (e.g. confusion, psychomotor slowing, difficulty with concentration/attention, difficulty with memory, speech or language problems, particularly word-finding difficulties); 2) Psychiatric/behavioral disturbances (e.g. depression or mood problems); and 3) Somnolence or fatigue.

以下是“全球医药”详细资料
Tags: 责任编辑:admin
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到QQ空间
分享到: 
上一篇TOPIRAMATEtablet 下一篇TOPIRAMATEtablet, film coated

相关栏目

最新文章

图片主题

热门文章

推荐文章

相关文章

广告位