Fluoroquinolones, including CIPRO® XR, are associated with an increased risk of tendinitis and tendon rupture in all ages. This risk is further increased in older patients usually over 60 years of age, in patients taking corticosteroid drugs, and in patients with kidney, heart or lung transplants (see WARNINGS).
Fluoroquinolones, including CIPRO XR, may exacerbate muscle weakness in persons with myasthenia gravis. Avoid CIPRO XR in patients with known history of myasthenia gravis (see WARNINGS).
To reduce the development of drug-resistant bacteria and maintain the effectiveness of CIPRO XR and other antibacterial drugs, CIPRO XR should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.
DESCRIPTION
CIPRO XR (ciprofloxacin* extended-release tablets) contains ciprofloxacin, a synthetic broad-spectrum antimicrobial agent for oral administration. CIPRO XR tablets are coated, bilayer tablets consisting of an immediate-release layer and an erosion-matrix type controlled-release layer. The tablets contain a combination of two types of ciprofloxacin drug substance, ciprofloxacin hydrochloride and ciprofloxacin betaine (base). Ciprofloxacin hydrochloride is 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7- (1-piperazinyl)-3-quinolinecarboxylic acid hydrochloride. It is provided as a mixture of the monohydrate and the sesquihydrate. The empirical formula of the monohydrate is C17H18FN3O3 • HCl • H2O and its molecular weight is 385.8. The empirical formula of the sesquihydrate is C17H18FN3O3 • HCl • 1.5 H2O and its molecular weight is 394.8. The drug substance is a faintly yellowish to light yellow crystalline substance. The chemical structure of the monohydrate is as follows:
Ciprofloxacin betaine is 1-cyclopropyl-6-fluoro-1, 4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid. As a hydrate, its empirical formula is C17H18FN3O3• 3.5 H2O and its molecular weight is 394.3. It is a pale yellowish to light yellow crystalline substance and its chemical structure is as follows:
CIPRO XR is available in 500 mg and 1000 mg (ciprofloxacin equivalent) tablet strengths. CIPRO XR tablets are nearly white to slightly yellowish, film-coated, oblong-shaped tablets. Each CIPRO XR 500 mg tablet contains 500 mg of ciprofloxacin as ciprofloxacin HCl (287.5 mg, calculated as ciprofloxacin on the dried basis) and ciprofloxacin† (212.6 mg, calculated on the dried basis). Each CIPRO XR 1000 mg tablet contains 1000 mg of ciprofloxacin as ciprofloxacin HCl (574.9 mg, calculated as ciprofloxacin on the dried basis) and ciprofloxacin† (425.2 mg, calculated on the dried basis). The inactive ingredients are crospovidone, hypromellose, magnesium stearate, polyethylene glycol, silica colloidal anhydrous, succinic acid, and titanium dioxide.
* as ciprofloxacin† and ciprofloxacin hydrochloride
† does not comply with the loss on drying test and residue on ignition test of the USP monograph.
CLINICAL PHARMACOLOGY
Absorption
CIPRO XR tablets are formulated to release drug at a slower rate compared to immediate-release tablets. Approximately 35% of the dose is contained within an immediate-release component, while the remaining 65% is contained in a slow-release matrix.
Maximum plasma ciprofloxacin concentrations are attained between 1 and 4 hours after dosing with CIPRO XR. In comparison to the 250 mg and 500 mg ciprofloxacin immediate-release BID treatment, the Cmax of CIPRO XR 500 mg and 1000 mg once daily are higher than the corresponding BID doses, while the AUCs over 24 hours are equivalent.
The following table compares the pharmacokinetic parameters obtained at steady state for these four treatment regimens (500 mg QD CIPRO XR versus 250 mg BID ciprofloxacin immediate-release tablets and 1000 mg QD CIPRO XR versus 500 mg BID ciprofloxacin immediate-release).
Ciprofloxacin Pharmacokinetics (Mean ± SD) Following CIPRO® and CIPRO XR Administration
Results of the pharmacokinetic studies demonstrate that CIPRO XR may be administered with or without food (e.g. high-fat and low-fat meals or under fasted conditions).
Distribution
The volume of distribution calculated for intravenous ciprofloxacin is approximately 2.1 – 2.7 L/kg. Studies with the oral and intravenous forms of ciprofloxacin have demonstrated penetration of ciprofloxacin into a variety of tissues. The binding of ciprofloxacin to serum proteins is 20% to 40%, which is not likely to be high enough to cause significant protein binding interactions with other drugs. Following administration of a single dose of CIPRO XR, ciprofloxacin concentrations in urine collected up to 4 hours after dosing averaged over 300 mg/L for both the 500 mg and 1000 mg tablets; in urine excreted from 12 to 24 hours after dosing, ciprofloxacin concentration averaged 27 mg/L for the 500 mg tablet, and 58 mg/L for the 1000 mg tablet.
Metabolism
Four metabolites of ciprofloxacin were identified in human urine. The metabolites have antimicrobial activity, but are less active than unchanged ciprofloxacin. The primary metabolites are oxociprofloxacin (M3) and sulfociprofloxacin (M2), each accounting for roughly 3% to 8% of the total dose. Other minor metabolites are desethylene ciprofloxacin (M1), and formylciprofloxacin (M4). The relative proportion of drug and metabolite in serum corresponds to the composition found in urine. Excretion of these metabolites was essentially complete by 24 hours after dosing. Ciprofloxacin is an inhibitor of human cytochrome P450 1A2 (CYP1A2) mediated metabolism. Coadministration of ciprofloxacin with other drugs primarily metabolized by CYP1A2 results in increased plasma concentrations of these drugs and could lead to clinically significant adverse events of the coadministered drug (see CONTRAINDICATIONS; WARNINGS; PRECAUTIONS: Drug Interactions).
Elimination
The elimination kinetics of ciprofloxacin are similar for the immediate-release and the CIPRO XR tablet. In studies comparing the CIPRO XR and immediate-release ciprofloxacin, approximately 35% of an orally administered dose was excreted in the urine as unchanged drug for both formulations. The urinary excretion of ciprofloxacin is virtually complete within 24 hours after dosing. The renal clearance of ciprofloxacin, which is approximately 300 mL/minute, exceeds the normal glomerular filtration rate of 120 mL/minute. Thus, active tubular secretion would seem to play a significant role in its elimination. Co-administration of probenecid with immediate-release ciprofloxacin results in about a 50% reduction in the ciprofloxacin renal clearance and a 50% increase in its concentration in the systemic circulation. Although bile concentrations of ciprofloxacin are several fold higher than serum concentrations after oral dosing with the immediate-release tablet, only a small amount of the dose administered is recovered from the bile as unchanged drug. An additional 1% to 2% of the dose is recovered from the bile in the form of metabolites. Approximately 20% to 35% of an oral dose of immediate-release ciprofloxacin is recovered from the feces within 5 days after dosing. This may arise from either biliary clearance or transintestinal elimination.
Special Populations
Pharmacokinetic studies of the immediate-release oral tablet (single dose) and intravenous (single and multiple dose) forms of ciprofloxacin indicate that plasma concentrations of ciprofloxacin are higher in elderly subjects (> 65 years) as compared to young adults. Cmax is increased 16% to 40%, and mean AUC is increased approximately 30%, which can be at least partially attributed to decreased renal clearance in the elderly. Elimination half-life is only slightly (~20%) prolonged in the elderly. These differences are not considered clinically significant. (See PRECAUTIONS, Geriatric Use.)
In patients with reduced renal function, the half-life of ciprofloxacin is slightly prolonged. No dose adjustment is required for patients with uncomplicated urinary tract infections receiving 500 mg CIPRO XR. For complicated urinary tract infection and acute uncomplicated pyelonephritis, where 1000 mg is the appropriate dose, the dosage of CIPRO XR should be reduced to CIPRO XR 500 mg q24h in patients with creatinine clearance below 30 mL/min. (See DOSAGE AND ADMINISTRATION.)
In studies in patients with stable chronic cirrhosis, no significant changes in ciprofloxacin pharmacokinetics have been observed. The kinetics of ciprofloxacin in patients with acute hepatic insufficiency, however, have not been fully elucidated. (See DOSAGE AND ADMINISTRATION.)
Drug-drug Interactions
Concomitant administration with tizanidine is contraindicated. (See CONTRAINDICATIONS). Previous studies with immediate-release ciprofloxacin have shown that concomitant administration of ciprofloxacin with theophylline decreases the clearance of theophylline resulting in elevated serum theophylline levels and increased risk of a patient developing CNS or other adverse reactions. Ciprofloxacin also decreases caffeine clearance and inhibits the formation of paraxanthine after caffeine administration. Absorption of ciprofloxacin is significantly reduced by concomitant administration of multivalent cation-containing products such as magnesium/aluminum antacids, sucralfate, VIDEX® (didanosine) chewable/buffered tablets or pediatric powder, or products containing calcium, iron, or zinc. (See WARNINGS: PRECAUTIONS, Drug Interactions and Information for Patients, and DOSAGE AND ADMINISTRATION.)
Antacids: When CIPRO XR given as a single 1000 mg dose was administered two hours before, or four hours after a magnesium/aluminum-containing antacid (900 mg aluminum hydroxide and 600 mg magnesium hydroxide as a single oral dose) to 18 healthy volunteers, there was a 4% and 19% reduction, respectively, in the mean Cmax of ciprofloxacin. The reduction in the mean AUC was 24% and 26%, respectively. CIPRO XR should be administered at least 2 hours before or 6 hours after antacids containing magnesium or aluminum, as well as sucralfate, VIDEX® (didanosine) chewable/buffered tablets or pediatric powder, other highly buffered drugs, metal cations such as iron, and multivitamin preparations with zinc. Although CIPRO XR may be taken with meals that include milk, concomitant administration with dairy products or with calcium-fortified juices alone should be avoided, since decreased absorption is possible. (See PRECAUTIONS, Information for Patients and Drug Interactions, and DOSAGE AND ADMINISTRATION.)
Omeprazole: When CIPRO XR was administered as a single 1000 mg dose concomitantly with omeprazole (40 mg once daily for three days) to 18 healthy volunteers, the mean AUC and Cmax of ciprofloxacin were reduced by 20% and 23%, respectively. The clinical significance of this interaction has not been determined. (See PRECAUTIONS, Drug Interactions.)
MICROBIOLOGY
Ciprofloxacin has in vitro activity against a wide range of gram-negative and gram-positive organisms. The bactericidal action of ciprofloxacin results from inhibition of topoisomerase II (DNA gyrase) and topoisomerase IV (both Type II topoisomerases), which are required for bacterial DNA replication, transcription, repair, and recombination. The mechanism of action of quinolones, including ciprofloxacin, is different from that of other antimicrobial agents such as beta-lactams, macrolides, tetracyclines, or aminoglycosides; therefore, organisms resistant to these drugs may be susceptible to ciprofloxacin. There is no known cross-resistance between ciprofloxacin and other classes of antimicrobials. Resistance to ciprofloxacin in vitro develops slowly (multiple-step mutation). Resistance to ciprofloxacin due to spontaneous mutations occurs at a general frequency of between < 10-9 to 1x10-6.
Ciprofloxacin is slightly less active when tested at acidic pH. The inoculum size has little effect when tested in vitro. The minimal bactericidal concentration (MBC) generally does not exceed the minimal inhibitory concentration (MIC) by more than a factor of 2.
Ciprofloxacin has been shown to be active against most strains of the following microorganisms, both in vitro and in clinical infections as described in the INDICATIONS AND USAGE section.
Aerobic gram-positive microorganisms
Enterococcus faecalis (Many strains are only moderately susceptible)
Staphylococcus saprophyticus
Aerobic gram-negative microorganisms
Escherichia coli
Klebsiella pneumoniae
Proteus mirabilis Pseudomonas aeruginosa
The following in vitro data are available, but their clinical significance is unknown.
Ciprofloxacin exhibits in vitro minimum inhibitory concentrations (MICs) of 1 μg/mL or less against most (≥ 90%) strains of the following microorganisms; however, the safety and effectiveness of CIPRO XR in treating clinical infections due to these microorganisms have not been established in adequate and well-controlled clinical trials.
Aerobic gram-negative microorganisms
Citrobacter koseri
Morganella morganii
Citrobacter freundii
Proteus vulgaris
Edwardsiella tarda
Providencia rettgeri
Enterobacter aerogenes
Providencia stuartii
Enterobacter cloacae
Serratia marcescens
Klebsiella oxytoca
Susceptibility Tests
Dilution Techniques:
Quantitative methods are used to determine antimicrobial minimal inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MICs should be determined using a standardized procedure. Standardized procedures are based on a dilution method1 (broth or agar) or equivalent with standardized inoculum concentrations and standardized concentrations of ciprofloxacin. The MIC values should be interpreted according to the following criteria:
For testing Enterobacteriaceae, Enterococcus faecalis, Pseudomonas aeruginosa, and Staphylococcus saprophyticus:
MIC (μg/mL)
Interpretation
≤ 1
Susceptible (S)
2
Intermediate (I)
≥ 4
Resistant (R)
A report of “Susceptible” indicates that the pathogen is likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable. A report of “Intermediate” indicates that the result should be considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where high dosage of drug can be used. This category also provides a buffer zone which prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of “Resistant” indicates that the pathogen is not likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable; other therapy should be selected.
Standardized susceptibility test procedures require the use of laboratory control microorganisms to control the technical aspects of the laboratory procedures. Standard ciprofloxacin powder should provide the following MIC values:
Microorganism
MIC Range (μg/mL)
Enterococcus faecalis
ATCC 29212
0.25 -2
Escherichia coli
ATCC 25922
0.004 -0.015
Staphylococcus aureus
ATCC 29213
0.12 -0.5
Pseudomonas aeruginosa
ATCC 27853
0.25 -1
Diffusion Techniques:
Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. One such standardized procedure2 requires the use of standardized inoculum concentrations. This procedure uses paper disks impregnated with 5-μg ciprofloxacin to test the susceptibility of microorganisms to ciprofloxacin. Reports from the laboratory providing results of the standard single-disk susceptibility test with a 5-μg ciprofloxacin disk should be interpreted according to the following criteria:
For testing Enterobacteriaceae, Enterococcus faecalis, Pseudomonas aeruginosa, and Staphylococcus saprophyticus:
Zone Diameter (mm)
Interpretation
≥ 21
Susceptible (S)
16 – 20
Intermediate (I)
≤ 15
Resistant (R)
Interpretation should be as stated above for results using dilution techniques. Interpretation involves correlation of the diameter obtained in the disk test with the MIC for ciprofloxacin.
As with standardized dilution techniques, diffusion methods require the use of laboratory control microorganisms that are used to control the technical aspects of the laboratory procedures. For the diffusion technique, the 5-μg ciprofloxacin disk should provide the following zone diameters in these laboratory test quality control strains:
Microorganism
Zone Diameter (mm)
Escherichia coli
ATCC 25922
30– 40
Staphylococcus aureus
ATCC 25923
22– 30
Pseudomonas aeruginosa
ATCC 27853
25– 33
INDICATIONS AND USAGE
CIPRO XR is indicated only for the treatment of urinary tract infections, including acute uncomplicated pyelonephritis, caused by susceptible strains of the designated microorganisms as listed below. CIPRO XR and ciprofloxacin immediate-release tablets are not interchangeable. Please see DOSAGE AND ADMINISTRATION for specific recommendations.
Uncomplicated Urinary Tract Infections (Acute Cystitis) caused by Escherichia coli, Proteus mirabilis, Enterococcus faecalis, or Staphylococcus saprophyticus.a
Complicated Urinary Tract Infections caused by Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, Proteus mirabilis, or Pseudomonas aeruginosa.a
Acute Uncomplicated Pyelonephritis caused by Escherichia coli.
a Treatment of infections due to this organism in the organ system was studied in fewer than 10 patients.
THE SAFETY AND EFFICACY OF CIPRO XR IN TREATING INFECTIONS OTHER THAN URINARY TRACT INFECTIONS HAS NOT BEEN DEMONSTRATED. Appropriate culture and susceptibility tests should be performed before treatment in order to isolate and identify organisms causing infection and to determine their susceptibility to ciprofloxacin. Therapy with CIPRO XR may be initiated before results of these tests are known; once results become available appropriate therapy should be continued. Culture and susceptibility testing performed periodically during therapy will provide information not only on the therapeutic effect of the antimicrobial agent but also on the possible emergence of bacterial resistance.
To reduce the development of drug-resistant bacteria and maintain the effectiveness of CIPRO XR and other antibacterial drugs, CIPRO XR should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.
CONTRAINDICATIONS
Ciprofloxacin is contraindicated in persons with a history of hypersensitivity to ciprofloxacin, any member of the quinolone class of antimicrobial agents, or any of the product components.
Tendinopathy and Tendon Rupture: Fluoroquinolones, including CIPRO XR, are associated with an increased risk of tendinitis and tendon rupture in all ages. This adverse reaction most frequently involves the Achilles tendon, and rupture of the Achilles tendon may require surgical repair. Tendinitis and tendon rupture in the rotator cuff (the shoulder), the hand, the biceps, the thumb, and other tendon sites have also been reported. The risk of developing fluoroquinolone-associated tendinitis and tendon rupture is further increased in older patients usually over 60 years of age, in patients taking corticosteroid drugs, and in patients with kidney, heart or lung transplants. Factors, in addition to age and corticosteroid use, that may independently increase the risk of tendon rupture include strenuous physical activity, renal failure, and previous tendon disorders such as rheumatoid arthritis. Tendinitis and tendon rupture have also occurred in patients taking fluoroquinolones who do not have the above risk factors. Tendon rupture can occur during or after completion of therapy; cases occurring up to several months after completion of therapy have been reported. CIPRO XR should be discontinued if the patient experiences pain, swelling, inflammation or rupture of a tendon. Patients should be advised to rest at the first sign of tendinitis or tendon rupture, and to contact their healthcare provider regarding changing to a non-quinolone antimicrobial drug.
Exacerbation of Myasthenia Gravis: Fluoroquinolones, including CIPRO XR, have neuromuscular blocking activity and may exacerbate muscle weakness in persons with myasthenia gravis. Postmarketing serious adverse events, including deaths and requirement for ventilatory support, have been associated with fluoroquinolone use in persons with myasthenia gravis. Avoid CIPRO XR in patients with known history of myasthenia gravis. (See PRECAUTIONS: Information for Patients and ADVERSE REACTIONS: Post-Marketing Adverse Event Reports).
THE SAFETY AND EFFECTIVENESS OF CIPRO XR IN PEDIATRIC PATIENTS AND ADOLESCENTS (UNDER THE AGE OF 18 YEARS), PREGNANT WOMEN, AND NURSING WOMEN HAVE NOT BEEN ESTABLISHED. (See PRECAUTIONS: Pediatric Use, Pregnancy, and Nursing Mothers subsections.) The oral administration of ciprofloxacin caused lameness in immature dogs. Histopathological examination of the weight-bearing joints of these dogs revealed permanent lesions of the cartilage. Related quinolone-class drugs also produce erosions of cartilage of weight-bearing joints and other signs of arthropathy in immature animals of various species. (See ANIMAL PHARMACOLOGY.)
Cytochrome P450 (CYP450): Ciprofloxacin is an inhibitor of the hepatic CYP1A2 enzyme pathway. Coadministration of ciprofloxacin and other drugs primarily metabolized by CYP1A2 (e.g. theophylline, methylxanthines, tizanidine) results in increased plasma concentrations of the coadministered drug and could lead to clinically significant pharmacodynamic side effects of the coadministered drug.
Convulsions, increased intracranial pressure, and toxic psychosis have been reported in patients receiving quinolones, including ciprofloxacin. Ciprofloxacin may also cause central nervous system (CNS) events including: dizziness, confusion, tremors, hallucinations, depression, and, rarely, suicidal thoughts or acts. These reactions may occur following the first dose. If these reactions occur in patients receiving ciprofloxacin, the drug should be discontinued and appropriate measures instituted. As with all quinolones, ciprofloxacin should be used with caution in patients with known or suspected CNS disorders that may predispose to seizures or lower the seizure threshold (e.g. severe cerebral arteriosclerosis, epilepsy), or in the presence of other risk factors that may predispose to seizures or lower the seizure threshold (e.g. certain drug therapy, renal dysfunction). (See PRECAUTIONS: General, Information for Patients,