设为首页 加入收藏

TOP

Synjardy film coated tablets
2016-01-03 14:11:27 来源: 作者: 【 】 浏览:638次 评论:0
Synjardy 5 mg/850 mg film-coated tablets, Synjardy 5 mg/1000 mg film-coated tablets, Synjardy 12.5 mg/850 mg film-coated tablets and Synjardy 12.5 mg/1000 mg film-coated tablets 
1. Name of the medicinal product

Synjardy 5 mg/850 mg film-coated tablets

Synjardy 5 mg/1,000 mg film-coated tablets

Synjardy 12.5 mg/850 mg film-coated tablets

Synjardy 12.5 mg/1,000 mg film-coated tablets

2. Qualitative and quantitative composition

Synjardy 5 mg/850 mg film-coated tablets

Each tablet contains 5 mg empagliflozin and 850 mg metformin hydrochloride.

Synjardy 5 mg/1,000 mg film-coated tablets

Each tablet contains 5 mg empagliflozin and 1,000 mg metformin hydrochloride.

Synjardy 12.5 mg/850 mg film-coated tablets

Each tablet contains 12.5 mg empagliflozin and 850 mg metformin hydrochloride.

Synjardy 12.5 mg/1,000 mg film-coated tablets

Each tablet contains 12.5 mg empagliflozin and 1,000 mg metformin hydrochloride.

For the full list of excipients, see section 6.1.

3. Pharmaceutical form

Film-coated tablet (tablet).

Synjardy 5 mg/850 mg film-coated tablets

Yellowish white, oval, biconvex film coated tablets debossed with “S5” and the Boehringer Ingelheim logo on one side and “850” on the other side (tablet length: 19.2 mm, tablet width: 9.4 mm).

Synjardy 5 mg/1,000 mg film-coated tablets

Brownish yellow, oval, biconvex film coated tablets debossed with “S5” and the Boehringer Ingelheim logo on one side and “1000” on the other side (tablet length: 21.1 mm, tablet width: 9.7 mm).

Synjardy 12.5 mg/850 mg film-coated tablets

Pinkish white, oval, biconvex film coated tablets debossed with “S12” and the Boehringer Ingelheim logo on one side and “850” on the other side (tablet length: 19.2 mm, tablet width: 9.4 mm).

Synjardy 12.5 mg/1,000 mg film-coated tablets

Dark brownish purple, oval, biconvex film coated tablets debossed with “S12” and the Boehringer Ingelheim logo on one side and “1000” on the other side (tablet length: 21.1 mm, tablet width: 9.7 mm).

4. Clinical particulars
 
4.1 Therapeutic indications

Synjardy is indicated in adults aged 18 years and older with type 2 diabetes mellitus as an adjunct to diet and exercise to improve glycaemic control

• in patients inadequately controlled on their maximally tolerated dose of metformin alone

• in patients inadequately controlled with metformin in combination with other glucose-lowering medicinal products, including insulin (see sections 4.5 and 5.1 for available data on different combinations)

• in patients already being treated with the combination of empagliflozin and metformin as separate tablets.

4.2 Posology and method of administration

Posology

The recommended dose is one tablet twice daily. The dosage should be individualised on the basis of the patient's current regimen, effectiveness, and tolerability using the recommended daily dose of 10 mg or 25 mg of empagliflozin, while not exceeding maximum recommended daily dose of metformin.

For patients inadequately controlled on metformin monotherapy or metformin in combination with other glucose-lowering medicinal products including insulin

In patients not adequately controlled on metformin alone or in combination with other glucose-lowering medicinal products, including insulin, the recommended starting dose of Synjardy should provide empagliflozin 5 mg twice daily (10 mg daily dose) and the dose of metformin similar to the dose already being taken. In patients tolerating a total daily dose of empagliflozin 10 mg and who need tighter glycaemic control, the dose can be increased to a total daily dose of empagliflozin 25 mg.

When Synjardy is used in combination with a sulphonylurea and/or insulin, a lower dose of sulphonylurea and/or insulin may be required to reduce the risk of hypoglycemia (see sections 4.5 and 4.8).

For patients switching from separate tablets of empagliflozin and metformin

Patients switching from separate tablets of empagliflozin (10 mg or 25 mg total daily dose) and metformin to Synjardy should receive the same daily dose of empagliflozin and metformin already being taken or the nearest therapeutically appropriate dose of metformin.

For the different doses of metformin, Synjardy is available in strengths of 5 mg empagliflozin plus 850 mg metformin hydrochloride, 5 mg empagliflozin plus 1,000 mg metformin hydrochloride, 12.5 mg empagliflozin plus 850 mg metformin hydrochloride, and 12.5 mg empagliflozin plus 1,000 mg metformin hydrochloride.

Special populations

Renal impairment

No dose adjustment is recommended for patients with mild renal impairment. This medicinal product must not be used in patients with moderate or severe renal impairment (creatinine clearance <60 ml/min) (see sections 4.3 and 4.4).

Hepatic impairment

This medicinal product must not be used in patients with hepatic impairment (see sections 4.3, 4.4 and 5.2).

Elderly

Due to the mechanism of action, decreased renal function will result in reduced efficacy of empagliflozin. Because metformin is excreted by the kidney and elderly patients are more likely to have decreased renal function, Synjardy should be used with caution in these patients. Monitoring of renal function is necessary to aid in prevention of metformin-associated lactic acidosis, particularly in elderly patients (see sections 4.3 and 4.4). In patients 75 years and older, an increased risk for volume depletion should be taken into account (see sections 4.4 and 4.8). Due to the limited therapeutic experience with empagliflozin in patients aged 85 years and older, initiation of therapy in this population is not recommended (see section 4.4).

Paediatric population

The safety and efficacy of Synjardy in children and adolescents aged 0 to 18 years has not been established. No data are available.

Method of administration

Synjardy should be taken twice daily with meals to reduce the gastrointestinal adverse reactions associated with metformin. All patients should continue their diet with an adequate distribution of carbohydrate intake during the day. Overweight patients should continue their energy restricted diet.

If a dose is missed, it should be taken as soon as the patient remembers. However, a double dose should not be taken on the same time. In that case, the missed dose should be skipped.

4.3 Contraindications

• Hypersensitivity to the active substances or to any of the excipients listed in section 6.1.

• Diabetic ketoacidosis, diabetic pre-coma.

• Renal failure or renal dysfunction (creatinine clearance <60 ml/min).

• Acute conditions with the potential to alter renal function such as: dehydration, severe infection, shock.

• Disease which may cause tissue hypoxia (especially acute disease, or worsening of chronic disease) such as: decompensated heart failure, respiratory failure, recent myocardial infarction, shock.

• Hepatic impairment, acute alcohol intoxication, alcoholism (see section 4.5).

4.4 Special warnings and precautions for use

General

Synjardy should not be used in patients with type 1 diabetes.

Lactic acidosis

Lactic acidosis is a very rare, but serious (high mortality in the absence of prompt treatment), metabolic complication that can occur due to metformin accumulation. Reported cases of lactic acidosis in patients on metformin have occurred primarily in diabetic patients with renal failure or acute worsening of renal function. Special caution should be paid to situations where renal function may become impaired, for example in case of dehydration (severe diarrhoea or vomiting), or when initiating antihypertensive therapy or diuretic therapy and when starting therapy with a non-steroidal anti-inflammatory drug (NSAID). In the acute conditions listed, metformin should be temporarily discontinued.

Other associated risk factors should be considered to avoid lactic acidosis such as poorly controlled diabetes, ketosis, prolonged fasting, excessive alcohol intake, hepatic impairment and any condition associated with hypoxia (such as decompensated cardiac failure, acute myocardial infarction) (see section 4.3).

The risk of lactic acidosis must be considered in the event of non-specific signs such as muscle cramps, digestive disorders as abdominal pain and severe asthenia. Patients should be instructed to notify these signs immediately to their physicians if they occur, notably if patients had a good tolerance to Synjardy before. Synjardy should be discontinued, at least temporarily, until the situation is clarified. Reintroduction of Synjardy should then be discussed taking into account the benefit/risk ratio in an individual basis as well as renal function.

Diagnosis

Lactic acidosis is characterised by acidotic dyspnea, abdominal pain and hypothermia followed by coma. Diagnostic laboratory findings are decreased blood pH, plasma lactate levels above 5 mmol/l, and an increased anion gap and lactate/pyruvate ratio. In case of lactic acidosis, the patient should be hospitalised immediately (see section 4.9).

Physician should alert the patients on the risk and on the symptoms of lactic acidosis.

Renal impairment

Due to the mechanism of action, decreased renal function will result in reduced efficacy of empagliflozin. Metformin is excreted by the kidney. Therefore, serum creatinine levels should be determined before initiating treatment and regularly thereafter:

• at least annually in patients with normal renal function

• at least two to four times a year in patients with serum creatinine levels at the upper limit of normal and in elderly subjects

Decreased renal function in elderly patients is frequent and asymptomatic. Special caution should be exercised in situations where renal function may become impaired, for example in case of dehydration, or when initiating antihypertensive therapy or diuretic therapy and when starting therapy with a non-steroidal anti-inflammatory drug (NSAID).

In these cases, it is also recommended to check renal function before initiating treatment with Synjardy.

Cardiac function

Patients with heart failure are more at risk of hypoxia and renal insufficiency. In patients with stable chronic heart failure, Synjardy may be used with a regular monitoring of cardiac and renal function. For patients with acute and unstable heart failure, Synjardy is contraindicated due to the metformin component (see section 4.3).

Hepatic injury

Cases of hepatic injury have been reported with empagliflozin in clinical trials. A causal relationship between empagliflozin and hepatic injury has not been established.

Administration of iodinated contrast agent

The intravascular administration of iodinated contrast materials in radiologic studies can lead to renal failure. This may induce metformin accumulation and may increase the risk for lactic acidosis. Therefore, this medicinal product must be discontinued prior to, or at the time of the test and not be reinstituted until at least 48 hours afterwards, and only after renal function has been re-eva luated and has not deteriorated further (see section 4.5).

Surgery

As this medicinal product contains metformin, the treatment must be discontinued 48 hours before elective surgery with general, spinal or peridural anaesthesia. Therapy should usually not be resumed earlier than 48 hours following surgery and only after renal function has been reeva luated and found to be normal.

Risk for volume depletion

Based on the mode of action of SGLT-2 inhibitors, osmotic diuresis accompanying therapeutic glucosuria may lead to a modest decrease in blood pressure (see section 5.1). Therefore, caution should be exercised in patients for whom a empagliflozin-induced drop in blood pressure could pose a risk, such as patients with known cardiovascular disease, patients on anti-hypertensive therapy with a history of hypotension or patients aged 75 years and older.

In case of conditions that may lead to fluid loss (e.g. gastrointestinal illness), careful monitoring of volume status (e.g. physical examination, blood pressure measurements, laboratory tests including haematocrit) and electrolytes is recommended for patients receiving Synjardy. Temporary interruption of treatment with Synjardy should be considered until the fluid loss is corrected.

Urinary tract infections

The overall frequency of urinary tract infection reported as adverse event was higher in patients treated with empagliflozin 10 mg on a background of metformin compared to patients treated with placebo or empagliflozin 25 mg on a background of metformin (see section 4.8). Complicated urinary tract infection (e.g. pyelonephritis or urosepsis) occurred at a similar frequency in patients treated with empagliflozin compared to placebo. However, temporary interruption of treatment should be considered in patients with complicated urinary tract infections.

Elderly

The effect of empagliflozin on urinary glucose excretion is associated with osmotic diuresis, which could affect the hydration status. Patients aged 75 years and older may be at an increased risk of volume depletion. Therapeutic experience in patients aged 85 years and older is limited. Initiation of therapy in this population is not recommended (see section 4.2).

Cardiac failure

Experience in New York Heart Association (NYHA) class I-II is limited, and there is no experience in clinical studies with empagliflozin in NYHA class III-IV.

Urine laboratory assessments

Due to its mechanism of action, patients taking Synjardy will test positive for glucose in their urine.

4.5 Interaction with other medicinal products and other forms of interaction

Co-administration of multiple doses of empagliflozin and metformin does not meaningfully alter the pharmacokinetics of either empagliflozin or metformin in healthy subjects.

No interaction studies have been performed for Synjardy. The following statements reflect the information available on the individual active substances.

Empagliflozin

Pharmacodynamic interactions

Diuretics

As Synjardy contains empagliflozin it may add to the diuretic effect of thiazide and loop diuretics and may increase the risk of dehydration and hypotension (see section 4.4).

Insulin and insulin secretagogues

Insulin and insulin secretagogues, such as sulphonylureas, may increase the risk of hypoglycaemia. Therefore, a lower dose of insulin or an insulin secretagogue may be required to reduce the risk of hypoglycaemia when used in combination with empagliflozin (see sections 4.2 and 4.8).

Pharmacokinetic interactions

Effects of other medicinal products on empagliflozin

In vitro data suggest that the primary route of metabolism of empagliflozin in humans is glucuronidation by uridine 5'-diphosphoglucuronosyltransferases UGT1A3, UGT1A8, UGT1A9, and UGT2B7. Empagliflozin is a substrate of the human uptake transporters OAT3, OATP1B1, and OATP1B3, but not OAT1 and OCT2. Empagliflozin is a substrate of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP).

Co-administration of empagliflozin with probenecid, an inhibitor of UGT enzymes and OAT3, resulted in a 26% increase in peak empagliflozin plasma concentrations (Cmax) and a 53% increase in area under the concentration-time curve (AUC). These changes were not considered to be clinically meaningful.

The effect of UGT induction on empagliflozin has not been studied. Co-medication with known inducers of UGT enzymes should be avoided due to a potential risk of decreased efficacy.

An interaction study with gemfibrozil, an in vitro inhibitor of OAT3 and OATP1B1/1B3 transporters, showed that empagliflozin Cmax increased by 15% and AUC increased by 59% following co-administration. These changes were not considered to be clinically meaningful.

Inhibition of OATP1B1/1B3 transporters by co-administration with rifampicin resulted in a 75% increase in Cmax and a 35% increase in AUC of empagliflozin. These changes were not considered to be clinically meaningful.

Empagliflozin exposure was similar with and without co-administration with verapamil, a P-gp inhibitor, indicating that inhibition of P-gp does not have any clinically relevant effect on empagliflozin.

Interaction studies conducted in healthy volunteers suggest that the pharmacokinetics of empagliflozin were not influenced by co-dministration with metformin, glimepiride, pioglitazone, sitagliptin, linagliptin, warfarin, verapamil, ramipril, simvastatin, torasemide and hydrochlorothiazide.

Effects of empagliflozin on other medicinal products

Based on in vitro studies, empagliflozin does not inhibit, inactivate, or induce CYP450 isoforms. Empagliflozin does not inhibit UGT1A1, UGT1A3, UGT1A8, UGT1A9, or UGT2B7. Drug-drug interactions involving the major CYP450 and UGT isoforms with empagliflozin and concomitantly administered substrates of these enzymes are therefore considered unlikely.

Empagliflozin does not inhibit P-gp at therapeutic doses. Based on in vitro studies, empagliflozin is considered unlikely to cause interactions with medicinal products that are P-gp substrates. Co-administration of digoxin, a P-gp substrate, with empagliflozin resulted in a 6% increase in AUC and 14% increase in Cmax of digoxin. These changes were not considered to be clinically meaningful.

Empagliflozin does not inhibit human uptake transporters such as OAT3, OATP1B1, and OATP1B3 in vitro at clinically relevant plasma concentrations and, as such, drug-drug interactions with substrates of these uptake transporters are considered unlikely.

Interaction studies conducted in healthy volunteers suggest that empagliflozin had no clinically relevant effect on the pharmacokinetics of metformin, glimepiride, pioglitazone, sitagliptin, linagliptin, simvastatin, warfarin, ramipril, digoxin, diuretics and oral contraceptives.

Metformin

Combinations not recommended

There is increased risk of lactic acidosis in acute alcohol intoxication (particularly in the case of fasting, malnutrition or hepatic impairment due to the metformin active substance (see section 4.4)). Consumption of alcohol and medicinal products containing alcohol should be avoided.

Cationic substances that are eliminated by renal tubular secretion (e.g. cimetidine) may interact with metformin by competing for common renal tubular transport systems.

The intravascular administration of iodinated contrast agents in radiological studies may lead to renal failure, resulting in metformin accumulation and a risk of lactic acidosis. Therefore, this medicinal product must be discontinued prior to, or at the time of the test and not reinstituted until 48 hours afterwards, and only after renal function has been re-eva luated and has not deteriorated further (see section 4.4).

Combination requiring precautions for use

Glucocorticoids (given by systemic and local routes), beta-2-agonists, and diuretics have intrinsic hyperglycaemic activity. The patient should be informed and more frequent blood glucose monitoring performed, especially at the beginning of treatment with such medicinal products. If necessary, the dose of the anti-hyperglycaemic medicinal product should be adjusted during therapy with the other medicinal product and on its discontinuation.

Insulin and insulin secretagogues

Insulin and insulin secretagogues, such as sulphonylureas, may increase the risk of hypoglycaemia. Therefore, a lower dose of insulin or an insulin secretagogue may be required to reduce the risk of hypoglycaemia when used in combination with metformin (see sections 4.2 and 4.8).

4.6 Fertility, pregnancy and lactation

Pregnancy

There are no data from the use of this medicinal product or empagliflozin in pregnant women. Animal studies show that empagliflozin crosses the placenta during late gestation to a very limited extent but do not indicate direct or indirect harmful effects with respect to early embryonic development. However, animal studies have shown adverse effects on postnatal development. A limited amount of data suggests that the use of metformin in pregnant women is not associated with an increased risk of congenital malformations. Animal studies with the combination of empagliflozin and metformin or with metformin alone have shown reproductive toxicity at higher doses of metformin only (see section 5.3).

When the patient plans to become pregnant, and during pregnancy, it is recommended that diabetes is not treated with this medicinal product, but insulin be used to maintain blood glucose levels as close to normal as possible, to reduce the risk of malformations of the foetus associated with abnormal blood glucose levels.

Breast-feeding

Metformin is excreted into human milk. No effects have been shown in breastfed newborns/infants of treated women. No data in humans are available on excretion of empagliflozin into milk. Available animal data have shown excretion of empagliflozin and metformin in milk. A risk to the newborns/infants cannot be excluded.

This medicinal product should not be used during breast feeding.

Fertility

No studies on the effect on human fertility have been conducted for this medicinal product or empagliflozin. Animal studies with empagliflozin and metformin do not indicate direct or indirect harmful effects with respect to fertility (see section 5.3).

4.7 Effects on ability to drive and use machines

Synjardy has minor influence on the ability to drive and use machines. Patients should be advised to take precautions to avoid hypoglycaemia while driving and using machines, in particular when Synjardy is used in combination with a sulphonylurea and/or insulin.

4.8 Undesirable effects

Summary of the safety profile

A total of 7052 patients with type 2 diabetes were treated in clinical studies to eva luate the safety of empagliflozin as add-on to metformin, of which 4740 patients were treated with empagliflozin as add-on to metformin.

Placebo controlled double-blinded trials of 18 to 24 weeks of exposure included 3456 patients, of which 1271 were treated with empagliflozin 10 mg as add-on to metformin and 1259 with empagliflozin 25 mg as add-on to metformin. The most commonly reported adverse events in clinical trials were hypoglycaemia in combination with insulin and/or sulphonylurea, urinary tract infections, genital tract infections and increased urination (see description of selected side effects). No additional adverse reactions were identified in clinical trials with empagliflozin as add-on to metformin compared to the side effects of the single components.

Tabulated list of adverse reactions

The adverse reactions are listed by absolute frequency. Frequencies are defined as very common (≥1/10), common (≥1/100 to <1/10), uncommon (≥1/1,000 to <1/100), rare (≥1/10,000 to <1/1,000), or very rare (<1/10,000), and not known (cannot be estimated from the available data).

Table 1 Adverse reactions reported in placebo-controlled studies

System organ class

Very common

Common

Uncommon

Very rare

Infections and infestations

 

Vaginal moniliasis, vulvovaginitis, balanitis and other genital infection1, 2

Urinary tract infection1, 2

   

Metabolism and nutrition disorders

Hypoglycaemia (when used with sulphonylurea or insulin)1

   

Lactic acidosis3

Vitamin B12 deficiency3, 4

Nervous system disorders

 

Taste disturbance3

   

Vascular disorders

   

Volume depletion1, 2

 

Gastrointestinal disorders

Gastrointestinal symptoms3, 5

     

Hepatobiliary disorders

     

Liver function tests abnormalities3

Hepatitis3

Skin and subcutaneous tissue disorders

 

Pruritus (generalised)

 

Erythema3

Urticaria3

Renal and urinary disorders

 

Increased urination1, 2

Dysuria2

 

1 See subsections below for additional information

2 Identified adverse reactions of empagliflozin monotherapy

3 Identified adverse reactions of metformin monotherapy

4 Long-term treatment with metformin has been associated with a decrease in vitamin B12 absorption which may very rarely result in clinically significant vitamin B12 deficiency (e.g. megaloblastic anaemia)

5 Gastrointestinal symptoms such as nausea, vomiting, diarrhoea, abdominal pain and loss of appetite occur most frequently during initiation of therapy and resolve spontaneously in most cases.

Description of selected adverse reactions

Hypoglycaemia

The frequency of hypoglycaemia depended on the background therapy in the respective studies.

Overall hypoglycaemia

The frequency of patients with hypoglycaemic events was similar for empagliflozin and placebo as add-on to metformin. An increased frequency was noted when empagliflozin given as add-on to metformin and a sulfonylurea (empagliflozin 10 mg: 16.1%, empagliflozin 25 mg: 11.5% and placebo: 8.4%) or as add-on to metformin and insulin (empagliflozin 10 mg: 31.3%, empagliflozin 25 mg: 36.2% and placebo: 34.7%).

Major hypoglycaemia (hypoglycaemia requiring assistance)

The frequency of patients with major hypoglycaemic events was low (<1%) and similar for empagliflozin and placebo as add-on to metformin. Major hypoglycaemic events occurred in 0.5%, 0% and 0.5% of patients treated with empagliflozin 10 mg, empagliflozin 25 mg and placebo when added on to metformin and insulin, respectively. No patient had a major hypoglycaemic event in the combination with metformin and a sulphonylurea.

Urinary tract infection

The overall frequency of urinary tract infection adverse events was higher in metformin-treated patients who received empagliflozin 10 mg (8.8%) compared to empagliflozin 25 mg (6.6%) or placebo (7.8%). Similar to placebo, urinary tract infection was reported more frequently for empagliflozin in patients with a history of chronic or recurrent urinary tract infections. The intensity of urinary tract infections (i.e. mild/moderate/severe) was similar to placebo. Urinary tract infection events were reported more frequently for empagliflozin 10 mg compared with placebo in female patients, but not for empagliflozin 25 mg. The frequencies of urinary tract infections were low for male patients and were balanced across treatment groups.

Vaginal moniliasis, vulvovaginitis, balanitis and other genital infection

Vaginal moniliasis, vulvovaginitis, balanitis and other genital infections were reported more frequently in metformin-treated patients who received empagliflozin 10 mg (4.0%) and empagliflozin 25 mg (3.9%) compared to placebo (1.3%), and were reported more frequently for empagliflozin compared to placebo in female patients. The difference in frequency was less pronounced in male patients. Genital tract infections were mild and moderate in intensity, none was severe in intensity.

Increased urination

As expected from the mechanism of action, increased urination (as assessed by PT search including pollakiuria, polyuria, nocturia) was observed at higher frequencies in metformin-treated patients who received empagliflozin 10 mg (3.0%) and empagliflozin 25 mg (2.9%) compared to placebo (1.4%) as add-on to metformin therapy. Increased urination was mostly mild or moderate in intensity. The frequency of reported nocturia was comparable between placebo and empagliflozin (<1%).

Volume depletion

The overall frequency of volume depletion (including the predefined terms blood pressure (ambulatory) decreased, blood pressure systolic decreased, dehydration, hypotension, hypovolaemia, orthostatic hypotension, and syncope) in metformin-treated patients who received empagliflozin was low: 0.6% for empagliflozin 10 mg, 0.3% for empagliflozin 25 mg and 0.1% for placebo. The effect of empagliflozin on urinary glucose excretion is associated with osmotic diuresis, which could affect hydration status of patients age 75 years and older. In patients ≥75 years of age volume depletion events have been reported in a single patient treated with empagliflozin 25 mg as add-on to metformin therapy.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via:

United Kingdom

Yellow Card Scheme

Website: www.mhra.gov.uk/yellowcard

Ireland

HPRA Pharmacovigilance

Earlsfort Terrace

IRL – Dublin 2

Tel: +353 1 6764971

Fax: +353 1 6762517

Website: www.hpra.ie

e-mail: medsafety@hpra.ie

Malta

ADR Reporting

The Medicines Authority

Post-Licensing Directorate

203 Level 3, Rue D'Argens

GŻR-1368 Gżira

Website: www.medicinesauthority.gov.mt

e-mail: postlicensing.medicinesauthority@gov.mt

4.9 Overdose

Symptoms

Empagliflozin

In controlled clinical studies single doses of up to 800 mg empagliflozin (equivalent to 32-times the highest recommended daily dose) in healthy volunteers and multiple daily doses of up to 100 mg empagliflozin (equivalent to 4-times the highest recommended daily dose) in patients with type 2 diabetes did not show any toxicity. Empagliflozin increased urine glucose excretion leading to an increase in urine volume. The observed increase in urine volume was not dose-dependent and is not clinically meaningful. There is no experience with doses above 800 mg in humans.

Metformin

Hypoglycaemia has not been seen with metformin doses of up to 85 g, although lactic acidosis has occurred in such circumstances. High overdose of metformin or concomitant risks may lead to lactic acidosis. Lactic acidosis is a medical emergency and must be treated in hospital.

Therapy

In the event of an overdose, treatment should be initiated as appropriate to the patient's clinical status. The most effective method to remove lactate and metformin is haemodialysis. The removal of empagliflozin by haemodialysis has not been studied.

5. Pharmacological properties
 
5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Drugs used in diabetes, combinations of oral blood glucose lowering drugs, ATC code: A10BD20

Mechanism of action

Synjardy combines two antihyperglycaemic medicinal products with complementary mechanisms of action to improve glycaemic control in patients with type 2 diabetes: empagliflozin, an inhibitor of sodium-glucose co-transporter 2 (SGLT2), and metformin hydrochloride, a member of the biguanide class.

Empagliflozin

Empagliflozin is a reversible, highly potent (IC50 of 1.3 nmol) and selective competitive inhibitor of SGLT2. Empagliflozin does not inhibit other glucose transporters important for glucose transport into peripheral tissues and is 5000-times more selective for SGLT2 versus SGLT1, the major transporter responsible for glucose absorption in the gut. SGLT2 is highly expressed in the kidney, whereas expression in other tissues is absent or very low. It is responsible, as the predominant transporter, for the reabsorption of glucose from the glomerular filtrate back into the circulation. In patients with type 2 diabetes and hyperglycaemia a higher amount of glucose is filtered and reabsorbed.

Empagliflozin improves glycaemic control in patients with type 2 diabetes by reducing renal glucose reabsorption. The amount of glucose removed by the kidney through this glucuretic mechanism is dependent on blood glucose concentration and GFR. Inhibition of SGLT2 in patients with type 2 diabetes and hyperglycaemia leads to excess glucose excretion in the urine.

In patients with type 2 diabetes, urinary glucose excretion increased immediately following the first dose of empagliflozin and is continuous over the 24 hour dosing interval. Increased urinary glucose excretion was maintained at the end of the 4-week treatment period, averaging approximately 78 g/day with empagliflozin 25 mg. Increased urinary glucose excretion resulted in an immediate reduction in plasma glucose levels in patients with type 2 diabetes.

Empagliflozin improves both fasting and post-prandial plasma glucose levels. The mechanism of action of empagliflozin is independent of beta cell function and insulin pathway and this contributes to a low risk of hypoglycaemia. Improvement of surrogate markers of beta cell function including Homeostasis Model Assessment-β (HOMA-β) was noted. In addition, urinary glucose excretion triggers calorie loss, associated with body fat loss and body weight reduction. The glucosuria observed with empagliflozin is accompanied by mild diuresis which may contribute to sustained and moderate reduction of blood pressure.

Metformin

Metformin is a biguanide with antihyperglycaemic effects, lowering both basal and postprandial plasma glucose. It does not stimulate insulin secretion and therefore does not produce hypoglycaemia.

Metformin may act via 3 mechanisms:

• reduction of hepatic glucose production by inhibiting gluconeogenesis and glycogenolysis,

• in muscle, by increasing insulin sensitivity, improving peripheral glucose uptake and utilization,

• and delay of intestinal glucose absorption.

Metformin stimulates intracellular glycogen synthesis by acting on glycogen synthase. Metformin increases the transport capacity of all types of membrane glucose transporters (GLUTs) known to date.

In humans, independently of its action on glycaemia, metformin has favourable effects on lipid metabolism. This has been shown at therapeutic doses in controlled, medium-term or long-term clinical studies: metformin reduces total cholesterol, LDL cholesterol and triglyceride levels.

Clinical efficacy and safety

A total of 4704 patients with type 2 diabetes were treated in 7 double-blind, placebo or active-controlled clinical studies of at least 24 weeks duration, of which 1109 patients received empagliflozin 10 mg and 1863 received empagliflozin 25 mg as add-on to metformin therapy. Of these, a total of 530 patients received empagliflozin as add-on to metformin plus insulin, of which 266 patients were treated with empagliflozin 10 mg and 264 with empagliflozin 25 mg.

Treatment with empagliflozin in combination with metformin with or without other antidiabetic medicinal products (pioglitazone, sulfonylurea, DPP-4 inhibitors, and insulin) led to clinically relevant improvements in HbA1c, fasting plasma glucose (FPG), body weight, systolic and diastolic blood pressure. Administration of empagliflozin 25 mg resulted in a higher proportion of patients achieving HbA1c goal of less than 7% and fewer patients needing glycaemic rescue compared to empagliflozin 10 mg and placebo. In patients age 75 years and older, numerically lower reductions in HbA1c were observed with empagliflozin treatment. Higher baseline HbA1c was associated with a greater reduction in HbA1c.

Empagliflozin as add-on to metformin, sulphonylurea, pioglitazone

Empagliflozin as add-on to metformin, metformin and a sulphonylurea, or pioglitazone and metformin resulted in statistically significant (p<0.0001) reductions in HbA1c and body weight compared to placebo (Table 2). In addition it resulted in a clinically meaningful reduction in FPG, systolic and diastolic blood pressure compared to placebo.

In the double-blind placebo-controlled extension of these studies, reduction of HbA1c, body weight and blood pressure were sustained up to Week 76.

Table 2: Efficacy results of 24 week placebo-controlled studies

Add-on to metformin therapya

 

Placebo

Empagliflozin

10 mg

25 mg

N

207

217

213

HbA1c (%)

Baseline (mean)

7.90

7.94

7.86

Change from baseline1

-0.13

-0.70

-0.77

Difference from placebo1 (97.5% CI)

 

-0.57* (-0.72, -0.42)

-0.64* (-0.79, -0.48)

N

184

199

191

Patients (%) achieving HbA1c <7% with baseline HbA1c ≥7%2

12.5

37.7

38.7

N

207

217

213

Body Weight (kg)

Baseline (m

以下是“全球医药”详细资料
Tags: 责任编辑:admin
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到QQ空间
分享到: 
上一篇Renagel 800 mg film-coated tabl.. 下一篇 Revlimid 15mg

相关栏目

最新文章

图片主题

热门文章

推荐文章

相关文章

广告位