设为首页 加入收藏

TOP

100 mg:Inovelon 100 mg film-coated tablets.200 mg:Inovelon20
2014-05-23 22:02:17 来源: 作者: 【 】 浏览:535次 评论:0
Table of Contents
1. NAME OF THE MEDICINAL PRODUCT
2. QUALITATIVE AND QUANTITATIVE COMPOSITION
3. PHARMACEUTICAL FORM
4. CLINICAL PARTICULARS
4.1 Therapeutic indications
4.2 Posology and method of administration
4.3 Contraindications
4.4 Special warnings and precautions for use
4.5 Interaction with other medicinal products and other forms of interaction
4.6 Pregnancy and lactation
4.7 Effects on ability to drive and use machines
4.8 Undesirable effects
4.9 Overdose
5. PHARMACOLOGICAL PROPERTIES
5.1 Pharmacodynamic properties
5.2 Pharmacokinetic properties
5.3 Preclinical safety data
6. PHARMACEUTICAL PARTICULARS
6.1 List of excipients
6.2 Incompatibilities
6.3 Shelf life
6.4 Special precautions for storage
6.5 Nature and contents of container
6.6 Special precautions for disposal and other handling
7. MARKETING AUTHORISATION HOLDER
8. MARKETING AUTHORISATION NUMBER(S)
9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION
10. DATE OF REVISION OF THE TEXT
11. LEGAL CATEGORY 

1. NAME OF THE MEDICINAL PRODUCT

 

100 mg: Inovelon 100 mg film-coated tablets.

200 mg: Inovelon 200 mg film-coated tablets.

400 mg: Inovelon 400 mg film-coated tablets.

 

 

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

 

100 mg:

Each film-coated tablet contains 100 mg rufinamide.

 

Excipient: 20 mg lactose monohydrate/film coated tablet.

200 mg:

Each film-coated tablet contains 200 mg rufinamide.

 

Excipient: 40 mg lactose monohydrate/film coated tablet.

400 mg:

Each film-coated tablet contains 400 mg rufinamide.

 

Excipient: 80 mg lactose monohydrate/film coated tablet.

For a full list of excipients, see section 6.1.

 

 

3. PHARMACEUTICAL FORM

 

Film-coated tablets.

 

100 mg:

Pink, 'ovaloid', slightly convex, scored on both sides, embossed 'Є261' on one side and blank on the other side.

200 mg:

Pink, 'ovaloid', slightly convex, scored on both sides, embossed 'Є262' on one side and blank on the other side.

400 mg:

Pink, 'ovaloid', slightly convex, scored on both sides, embossed 'Є263' on one side and blank on the other side.

The tablets can be divided into equal halves.

 

4. CLINICAL PARTICULARS

     

4.1 Therapeutic indications

 

Inovelon is indicated as adjunctive therapy in the treatment of seizures associated with Lennox-Gastaut syndrome in patients 4 years of age and older.

 

 

4.2 Posology and method of administration

 

Treatment with rufinamide should be initiated by a physician specialised in paediatrics or neurology with experience in the treatment of epilepsy.

 

Posology

Use in children four years of age or older and less than 30 kg

Patients <30 kg not receiving valproate:

Treatment should be initiated at a daily dose of 200 mg. According to clinical response and tolerability, the dose may be increased by 200 mg/day increments, as frequently as every two days, up to a maximum recommended dose of 1000 mg/day. Doses of up to 3600 mg/day have been studied in a limited number of patients.

 

Patients <30 kg also receiving valproate:

As valproate significantly decreases clearance of rufinamide, a lower maximum dose of Inovelon is recommended for patients <30 kg being co-administered valproate. Treatment should be initiated at a daily dose of 200 mg. According to clinical response and tolerability, after a minimum of 2 days the dose may be increased by 200 mg/day, to the maximum recommended dose of 600 mg/day.

 

Use in adults, adolescents and children four years of age or older of 30 kg or over

Treatment should be initiated at a daily dose of 400 mg. According to clinical response and tolerability, the dose may be increased by 400 mg/day increments, as frequently as every two days, up to a maximum recommended dose as indicated in the table below.

 

Weight range

30.0 – 50.0 kg

50.1 – 70.0 kg

GREATER-THAN OR EQUAL TO (8805)70.1 kg

Maximum recommended dose

1,800mg/day

2,400mg/day

3,200mg/day

Doses of up to 4,000 mg/day (in the 30-50 kg range) or 4,800 mg/day (in the over 50 kg) have been studied in a limited number of patients.

Safety and efficacy of rufinamide in children under 4 years of age has not yet been established. No data are available.

 

Elderly

There is limited information on the use of rufinamide in the elderly. Since, the pharmacokinetics of rufinamide are not altered in the elderly (see section 5.2), dosage adjustment is not required in patients over 65 years of age.

 

Patients with renal impairment

A study in patients with severe renal impairment indicated that no dose adjustments are required for these patients (see section 5.2).

 

Patients with hepatic impairment

Use in patients with hepatic impairment has not been studied. Caution and careful dose titration is recommended when treating patients with mild to moderate hepatic impairment. Therefore, use in patients with severe hepatic impairment is not recommended.

 

Discontinuation of rufinamide

When rufinamide treatment is to be discontinued, it should be withdrawn gradually. In clinical trials rufinamide discontinuation was achieved by reducing the dose by approximately 25% every two days.

In the case of one or more missed doses, individualised clinical judgement is necessary.

Uncontrolled open-label studies suggest sustained long-term efficacy, although no controlled study has been conducted for longer than three months.

 

Method of administration

Rufinamide is for oral use. It should be taken twice daily with water in the morning and in the evening, in two equally divided doses. As a food effect was observed, it will preferable to administer Inovelon with food (see section 5.2). If the patient has difficulty with swallowing, tablets can be crushed and administered in half a glass of water.

 

 

4.3 Contraindications

 

Hypersensitivity to the active substance, triazole derivatives or to any of the excipients.

 

 

4.4 Special warnings and precautions for use

 

Status epilepticus cases have been observed during clinical development studies, under rufinamide whereas no such cases have been observed under placebo. These events led to rufinamide discontinuation in 20 % of the cases. If patients develop new seizure types and/or experience an increased frequency of status epilepticus that is different from the patient's baseline condition, then the benefit risk ratio of the therapy should be reassessed.

Rufinamide should be withdrawn gradually to reduce the possibility of seizures on withdrawal. In clinical studies discontinuation was achieved by reducing the dose by approximately 25% every two days. There are insufficient data on the withdrawal of concomitant antiepileptic medicinal products once seizure control has been achieved with the addition of rufinamide.

Rufinamide treatment has been associated with dizziness, somnolence, ataxia and gait disturbances, which could increase the occurrence of accidental falls in this population (see section 4.8). Patients and carers should exercise caution until they are familiar with the potential effects of this medicinal product.

Serious antiepileptic medicinal product hypersensitivity syndrome has occurred in association with rufinamide therapy. Signs and symptoms of this disorder were diverse; however, patients typically, although not exclusively, presented with fever and rash associated with other organ system involvement. Other associated manifestations included lymphadenopathy, liver function tests abnormalities, and haematuria. Because the disorder is variable in its expression, other organ system signs and symptoms not noted here may occur. This syndrome occurred in close temporal association to the initiation of rufinamide therapy and in the paediatric population. If this reaction is suspected, rufinamide should be discontinued and alternative treatment started. All patients who develop a rash while taking rufinamide must be closely monitored.

In a thorough QT study, rufinamide produced a decrease in QTc interval proportional to concentration. Although the underlying mechanism and safety relevance of this finding is not known, clinicians should use clinical judgment when assessing whether to prescribe rufinamide to patients at risk from further shortening their QTc duration (eg. Congenital Short QT Syndrome or patients with a family history of such a syndrome).

Women of childbearing potential must use contraceptive measures during treatment with Inovelon. Physicians should try to ensure that appropriate contraception is used, and should use clinical judgement when assessing whether oral contraceptives, or the doses of the oral contraceptive components, are adequate based on the individual patients clinical situation (see section 4.5).

Inovelon contains lactose, therefore patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency or glucose-galactose malabsorption should not take this medicine.

 

 

4.5 Interaction with other medicinal products and other forms of interaction

 

Potential for other medicinal products to affect rufinamide

Other anti-epileptic medicinal products

Rufinamide concentrations are not subject to clinically relevant changes on co-administration with known enzyme inducing antiepileptic medicinal products.

For patients on rufinamide treatment who have administration of valproate initiated, significant increases in rufinamide plasma concentrations may occur. The most pronounced increases were observed in patients of low body weight (<30 kg). Therefore, consideration should be given to a dose reduction of Inovelon in patients <30 kg who are initiated on valproate therapy (see section 4.2).

The addition or withdrawal of these medicinal products or adjusting of the dose of these medicinal products during rufinamide therapy may require an adjustment in dosage of rufinamide.

No significant changes in rufinamide concentration are observed following co-administration with lamotrigine, topiramate or benzodiazepines.

 

Potential for rufinamide to affect other medicinal products

Other anti-epileptic medicinal products

The pharmacokinetic interactions between rufinamide and other anti-epileptic medicinal products have been eva luated in patients with epilepsy using population pharmacokinetic modelling. Rufinamide appears not to have clinically relevant effect on carbamazepine, lamotrigine, phenobarbital, topiramate or valproate steady state concentrations.

 

Oral contraceptives

Co-administration of rufinamide 800mg b.i.d. and a combined oral contraceptive (ethinyloestradiol 35μg and norethindrone 1mg) for 14 days resulted in a mean decrease in the ethinyl estradiol AUC0-24 of 22% and in norethindrone AUC0-24 of 14%. Studies with other oral or implant contraceptives have not been conducted. Women of child-bearing potential using hormonal contraceptives are advised to use an additional safe and effective contraceptive method (see section 4.4 and 4.6).

 

Cytochrome P450 enzymes

Rufinamide is metabolised by hydrolysis, and is not metabolised to any notable degree by cytochrome P450 enzymes. Furthermore, rufinamide does not inhibit the activity of cytochrome P450 enzymes (see section 5.2). Thus, clinically significant interactions mediated through inhibition of cytochrome P450 system by rufinamide are unlikely to occur. Rufinamide has been shown to induce the cytochrome P450 enzyme CYP3A4 and may therefore reduce the plasma concentrations of substances which are metabolised by this enzyme. The effect was modest to moderate. The mean CYP3A activity, assessed as clearance of triazolam, was increased by 55% after 11 days of treatment with rufinamide 400 mg b.i.d. The exposure of triazolam was reduced by 36%. Higher rufinamide doses may result in a more pronounced induction. It may not be excluded that rufinamide may decrease the exposure of substances metabolized by other enzymes, or transported by transport proteins such as P-glycoprotein.

It is recommended that patients treated with substances that are metabolised by the CYP3A enzyme system are to be carefully monitored for two weeks at the start of, or after the end of treatment with rufinamide, or after any marked change in the dose. A dose adjustment of the concomitantly administered medicinal product may need to be considered. These recommendations should also be considered when rufinamide is used concomitantly with substances with a narrow therapeutic window such as warfarin and digoxin.

A specific interaction study in healthy subjects revealed no influence of rufinamide at a dose of 400 mg bid on the pharmacokinetics of olanzapine, a CYP1A2 substrate.

No data on the interaction of rufinamide with alcohol are available.

 

 

4.6 Pregnancy and lactation

 

Pregnancy

Risk related to epilepsy and antiepileptic medicinal products in general:

It has been shown that in the offspring of women with epilepsy, the preva lence of malformations is two to three times greater than the rate of approximately 3% in the general population. In the treated population, an increase in malformations has been noted with polytherapy; however, the extent to which the treatment and/or the illness is responsible has not been elucidated.

Moreover, effective anti-epileptic therapy must not be interrupted, since the aggravation of the illness is detrimental to both the mother and the foetus.

 

Risk related to rufinamide:

Studies in animals revealed no teratogenic effect but foetotoxicity in presence of maternal toxicity (see section 5.3). The potential risk for humans is unknown.

For rufinamide, no clinical data on exposed pregnancies are available

Taking these data into consideration, rufinamide should not be used during pregnancy unless clearly necessary and in women of childbearing age not using contraceptive measures.

Women of childbearing potential must use contraceptive measures during treatment with rufinamide. Physicians should try to ensure that appropriate contraception is used, and should use clinical judgement when assessing whether oral contraceptives, or the doses of the oral contraceptive components, are adequate based on the individual patients clinical situation (see section 4.5).

If women treated with rufinamide plan to become pregnant, the indication of this product should be carefully weighed. During pregnancy, an effective antiepileptic rufinamide treatment must not be interrupted, since the aggravation of the illness is detrimental to both the mother and the foetus.

 

Breastfeeding

It is not known if rufinamide is excreted in human breast milk. Due to the potential harmful effects for the breast fed infant, the lactation should be avoided during maternal treatment with rufinamide.

 

Fertility

No data are available on the effects on fertility following treatment with rufinamide

 

 

4.7 Effects on ability to drive and use machines

 

Inovelon may cause dizziness, somnolence and blurred vision. Depending on the individual sensitivity, rufinamide may have a mild to major influence on the ability to drive or use machines. Patients must be advised to exercise caution during activities requiring a high degree of alertness, e.g., driving or operating machinery.

 

 

4.8 Undesirable effects

 

The clinical development program has included over 1,900 patients, with different types of epilepsy, exposed to rufinamide. The most commonly reported adverse reactions overall were headache, dizziness, fatigue, and somnolence. The most common adverse reactions observed at a higher incidence than placebo in patients with Lennox-Gastaut syndrome were somnolence and vomiting. Adverse reactions were usually mild to moderate in severity. The discontinuation rate in Lennox-Gastaut syndrome due to adverse reactions was 8.2% for patients receiving rufinamide and 0% for patients receiving placebo. The most common adverse reactions resulting in discontinuation from the rufinamide treatment group were rash and vomiting.

Adverse reactions reported with an incidence greater than placebo, during the Lennox-Gastaut syndrome double-blind studies or in the overall rufinamide-exposed population, are listed in the table below by MedDRA preferred term, system organ class and by frequency.

Frequencies are defined as: very common (GREATER-THAN OR EQUAL TO (8805) 1/10), common (GREATER-THAN OR EQUAL TO (8805) 1/100 < 1/10), uncommon (GREATER-THAN OR EQUAL TO (8805) 1/1,000 < 1/100), rare (GREATER-THAN OR EQUAL TO (8805)1/10,000 to <1/1,000).

 

System Organ Class

Very Common

Common

Uncommon

Rare

Infections and Infestations

 

Pneumonia

Influenza

Nasopharyngitis

Ear infection

Sinusitis

Rhinitis

   

Immune system disorders

   

Hypersensitivity*

 

Metabolism and Nutrition disorders

 

Anorexia

Eating disorder

Decreased appetite

   

Psychiatric disorders

 

Anxiety

Insomnia

   

Nervous system disorders

Somnolence*

Headache

Dizziness*

Status epilepticus*

Convulsion

Coordination Abnormal*

Nystagmus

Psychomotor hyperactivity

Tremor

   

Eye Disorders

 

Diplopia

Vision blurred

   

Ear and Labyrinth disorders

 

Vertigo

   

Respiratory, thoracic and mediastinal disorders

 

Epistaxis

   

Gastrointestinal disorders

Nausea

Vomiting

Abdominal pain upper

Constipation

Dyspepsia

Diarrhoea

   

Hepato-biliary disorders

   

Hepatic enzyme increase

 

Skin and subcutaneous tissue disorders

 

Rash*

Acne

   

Musculoskeletal and connective tissue and bone disorders

 

Back pain

   

Reproductive system and breast disorders

 

Oligomenorrhoea

   

General disorders and administration site conditions

Fatigue

Gait disturbance*

   

Investigations

 

Weight decrease

   

Injury, poisoning

 

Head injury

Contusion

   

*Cross refer to Section 4.4.

 

 

4.9 Overdose

 

After an acute overdose, the stomach may be emptied by gastric lavage or by induction of emesis. There is no specific antidote for rufinamide. Treatment should be supportive and may include haemodialysis (see section 5.2).

Multiple dosing of 7,200 mg/day was associated with no major signs or symptoms.

 

 

5. PHARMACOLOGICAL PROPERTIES

     

5.1 Pharmacodynamic properties

 

Pharmacotherapeutic group: anti-epileptics, carboxamide derivatives; ATC-code: N03AF03.

 

Mechanism of action

Rufinamide modulates the activity of sodium channels, prolonging their inactive state. Rufinamide is active in a range of animal models of epilepsy.

 

Clinical experience

Inovelon (rufinamide tablets) was administered in a double blind, placebo-controlled study, at doses of up to 45 mg/kg/day for 84 days, to 139 patients with inadequately controlled seizures associated with Lennox-Gastaut Syndrome (including both atypical absence seizures and drop attacks). Male or female patients (between 4 and 30 years of age) were included if they were being treated with 1 to 3 concomitant fixed-dose antiepileptic medicinal products. Each patient had to have at least 90 seizures in the month prior to study entry. A significant improvement was observed for all three primary variables: the percentage change in total seizure frequency per 28 days during the maintenance phase relative to baseline (-35.8% on Inovelon vs. –1.6% on placebo, p= 0.0006), the number of tonic-atonic seizures (-42.9% on Inovelon vs. 2.2% on placebo, p = 0.0002), and the seizure severity rating from the Global eva luation performed by the parent/guardian at the end of the double-blind phase (much or very much improved in 32.2% on Inovelon vs. 14.5% on the placebo arm, p=0.0041).

Population pharmacokinetic/pharmacodynamic modelling demonstrated that the reduction of total and tonic-atonic seizure frequencies, the improvement of the global eva luation of seizure severity and the increase in probability of reduction of seizure frequency were dependent on rufinamide concentrations.

 

 

5.2 Pharmacokinetic properties

 

Absorption

Maximum plasma levels are reached approximately 6 hours after administration. Peak concentration (Cmax) and plasma AUC of rufinamide increase less than proportionally with doses in both fasted and fed healthy subjects and in patients, probably due to dose-limited absorption behaviour. After single doses food increases the bioavailability (AUC) of rufinamide by approximately 34% and the peak plasma concentration by 56%.

 

Distribution

In in-vitro studies, only a small fraction of rufinamide (34%) was bound to human serum proteins with albumin accounting for approximately 80% of this binding. This indicates minimal risk of drug-drug interactions by displacement from binding sites during concomitant administration of other substances. Rufinamide was evenly distributed between erythrocytes and plasma.

 

Biotransformation

Rufinamide is almost exclusively eliminated by metabolism. The main pathway of metabolism is hydrolysis of the carboxylamide group to the pharmacologically inactive acid derivative CGP 47292. Cytochrome P450-mediated metabolism is very minor. The formation of small amounts of glutathione conjugates cannot be completely excluded.

Rufinamide has demonstrated little or no significant capacity in-vitro to act as a competitive or mechanism-based inhibitor of the following human P450 enzymes: CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4/5 or CYP4A9/11-2.

 

Elimination

The plasma elimination half-life is approximately 6-10 hours in healthy subjects and patients with epilepsy. When given twice daily at 12-hourly intervals, rufinamide accumulates to the extent predicted by its terminal half-life, indicating that the pharmacokinetics of rufinamide are time-independent (i.e. no autoinduction of metabolism).

In a radiotracer study in three healthy volunteers, the parent compound (rufinamide) was the main radioactive component in plasma, representing about 80% of the total radioactivity, and the metabolite CGP 47292 constituting only about 15%. Renal excretion was the predominant route of elimination for active substance related material, accounting for 84.7% of the dose.

 

Linearity/non-linearity:

The bioavailability of rufinamide is dependent on dose. As dose increases the bioavailability decreases.

 

Pharmacokinetics in special patient groups

Sex

Population pharmacokinetic modelling has been used to eva luate the influence of sex on the pharmacokinetics of rufinamide. Such eva luations indicate that sex does not affect the pharmacokinetics of rufinamide to a clinically relevant extent.

 

Renal impairment

The pharmacokinetics of a single 400 mg dose of rufinamide were not altered in subjects with chronic and severe renal failure compared to healthy volunteers. However, plasma levels were reduced by approximately 30% when haemodialysis was applied after administration of rufinamide, suggesting that this may be a useful procedure in case of overdose (see sections 4.2 and 4.9).

 

Hepatic impairment

No studies have been performed in patients with hepatic impairment and therefore Inovelon should not be administered to patients with severe hepatic impairment (see section 4.2).

 

Children (2-12 years)

Children generally have lower clearance of rufinamide than adults, and this difference is related to body size. Studies in new-born infants or infants and toddlers under 2 years of age have not been conducted.

 

Elderly

A pharmacokinetic study in elderly healthy volunteers did not show a significant difference in pharmacokinetic parameters compared with younger adults.

 

 

5.3 Preclinical safety data

 

Conventional safety pharmacology studies revealed no special hazards at clinically relevant doses.

Toxicities observed in dogs at levels similar to human exposure at the maximum recommended dose were liver changes, including bile thrombi, cholestasis and liver enzyme elevations thought to be related to increased bile secretion in this species. No evidence of an associated risk was identified in the rat and monkey repeat dose toxicity studies.

In reproductive and developmental toxicity studies, there were reductions in foetal growth and survival, and some stillbirths secondary to maternal toxicity. However, no effects on morphology and function, including learning or memory, were observed in the offspring. Rufinamide was not teratogenic in mice, rats or rabbits.

Rufinamide was not genotoxic and had no carcinogenic potential. Adverse effects not observed in clinical studies, but seen in animals at exposure levels similar to clinical exposure levels and with possible relevance to human use was myelofibrosis of the bone marrow in the mouse carcinogenicity study. Benign bone neoplasms (osteomas) and hyperostosis seen in mice were considered a result of the activation of a mouse specific virus by fluoride ions released during the oxidative metabolism of rufinamide.

Regarding the immunotoxic potential, small thymus and thymic involution were observed in dogs in a 13-week study with significant response at the high dose in male. In the 13 week study, female bone marrow and lymphoid changes are reported at the high dose with a weak incidence. In rats decreased cellularity of the bone marrow and thymic atrophy were observed only in the carcinogenicity study.

 

 

6. PHARMACEUTICAL PARTICULARS

     

6.1 List of excipients

 

Core:

Lactose monohydrate

Cellulose, microcrystalline

Maize starch

Croscarmellose sodium

Hypromellose

Magnesium stearate

Sodium laurilsulfate

Silica colloidal, anhydrous

 

Film coating:

Opadry 00F44042 [consists of hypromellose, macrogols (8000), titanium dioxide (E171), talc and ferric oxide red (E172)].

 

 

6.2 Incompatibilities

 

Not applicable.

 

 

6.3 Shelf life

 

4 years.

 

 

6.4 Special precautions for storage

 

Do not store above 30°C.

 

 

6.5 Nature and contents of container

 

100 mg: Aluminium/aluminium blisters, packs of 10, 30, 50, 60 and 100 film-coated tablets.

200mg: Aluminium/aluminium blisters, packs of 10, 30, 50, 60 and 100 film-coated tablets.

400 mg: Aluminium/aluminium blisters, packs of 10, 30, 50, 60, 100 and 200 film-coated tablets.

Not all pack sizes may be marketed.

 

 

6.6 Special precautions for disposal and other handling

 

No special requirements.

 

 

7. MARKETING AUTHORISATION HOLDER

 

Eisai Limited, European Knowledge Centre, Mosquito Way, Hatfield, Hertfordshire, AL10 9SN, UK

 

 

8. MARKETING AUTHORISATION NUMBER(S)

 

100 mg 10 film-coated tablets:

EU/1/06/378/001

100 mg 30 film-coated tablets:

EU/1/06/378/002

100 mg 50 film-coated tablets:

EU/1/06/378/003

100 mg 60 film-coated tablets:

EU/1/06/378/004

100 mg 100 film-coated tablets:

EU/1/06/378/005

 

200 mg 10 film-coated tablets:

EU/1/06/378/006

200 mg 30 film-coated tablets:

EU/1/06/378/007

200 mg 50 film-coated tablets:

EU/1/06/378/008

200 mg 60 film-coated tablets:

EU/1/06/378/009

200 mg 100 film-coated tablets:

EU/1/06/378/010

 

400 mg 10 film-coated tablets:

EU/1/06/378/011

400 mg 30 film-coated tablets:

EU/1/06/378/012

400 mg 50 film-coated tablets:

EU/1/06/378/013

400 mg 60 film-coated tablets:

EU/1/06/378/014

400 mg 100 film-coated tablets:

EU/1/06/378/015

400 mg 200 film-coated tablets:

EU/1/06/378/016

 

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

 

16 January 2007

 

 

10. DATE OF REVISION OF THE TEXT

 

21st November 2011

 

 

11. LEGAL CATEGORY

 

POM - Medicinal product subject to medical prescription

 

 
以下是“全球医药”详细资料
Tags: 责任编辑:admin
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到QQ空间
分享到: 
上一篇RoActemra 20 mg/ml concentrate .. 下一篇Xyzal 5 mg film-coated tabletsL..

相关栏目

最新文章

图片主题

热门文章

推荐文章

相关文章

广告位