s and imatinib should be avoided.
Active substances that may have their plasma concentration altered by Glivec
Imatinib increases the mean Cmax and AUC of simvastatin (CYP3A4 substrate) 2- and 3.5-fold, respectively, indicating an inhibition of the CYP3A4 by imatinib. Therefore, caution is recommended when administering Glivec with CYP3A4 substrates with a narrow therapeutic window (e.g. cyclosporin or pimozide). Glivec may increase plasma concentration of other CYP3A4 metabolised drugs (e.g. triazolo-benzodiazepines, dihydropyridine calcium channel blockers, certain HMG-CoA reductase inhibitors, i.e. statins, etc.).
Because warfarin is metabolised by CYP2C9, patients who require anticoagulation should receive low-molecular-weight or standard heparin.
In vitro Glivec inhibits the cytochrome P450 isoenzyme CYP2D6 activity at concentrations similar to those that affect CYP3A4 activity. Imatinib at 400 mg twice daily had an inhibitory effect on CYP2D6-mediated metoprolol metabolism, with metoprolol Cmax and AUC being increased by approximately 23% (90%CI [1.16-1.30]). Dose adjustments do not seem to be necessary when imatinib is co-administrated with CYP2D6 substrates, however caution is advised for CYP2D6 substrates with a narrow therapeutic window such as metoprolol. In patients treated with metoprolol clinical monitoring should be considered.
In vitro, Glivec inhibits paracetamol O-glucuronidation (Ki value of 58.5 micromol/l at therapeutic levels).
Caution should therefore be exercised when using Glivec and paracetamol concomitantly, especially with high doses of paracetamol.
In thyroidectomy patients receiving levothyroxine, the plasma exposure to levothyroxine may be decreased when Glivec is co-administered (see section 4.4). Caution is therefore recommended. However, the mechanism of the observed interaction is presently unknown.
In Ph+ ALL patients, there is clinical experience of co-administering Glivec with chemotherapy (see section 5.1), but drug-drug interactions between imatinib and chemotherapy regimens are not well characterised. Imatinib adverse events, i.e. hepatotoxicity, myelosuppression or others, may increase and it has been reported that concomitant use with L-asparaginase could be associated with increased hepatotoxicity (see section 4.8). Therefore, the use of Glivec in combination requires special precaution.
4.6 Pregnancy and lactation
Pregnancy
There are no adequate data on the use of imatinib in pregnant women. Studies in animals have however shown reproductive toxicity (see section 5.3) and the potential risk for the foetus is unknown. Glivec should not be used during pregnancy unless clearly necessary. If it is used during pregnancy, the patient must be informed of the potential risk to the foetus. Women of childbearing potential must be advised to use effective contraception during treatment.
Breast-feeding
There is limited information on imatinib distribution on human milk. Studies in two breast-feeding women revealed that both imatinib and its active metabolite can be distributed into human milk. The milk plasma ratio studied in a single patient was determined to be 0.5 for imatinib and 0.9 for the metabolite, suggesting greater distribution of the metabolite into the milk. Considering the combined concentration of imatinib and the metabolite and the maximum daily milk intake by infants, the total exposure would be expected to be low (~10% of a t |