gher and the average plasma concentration is 70% greater than in younger patients.
In healthy subjects, the elimination half-life of a different sustained release nifedipine formulation was longer in elderly subjects (6.7 h) compared to young subjects (3.8 h) following oral administration. A decreased clearance was also observed in the elderly (348 mL/min) compared to young subjects (519 mL/min) following intravenous administration.
Coadministration of nifedipine with grapefruit juice results in up to a 2-fold increase in AUC and Cmax, due to inhibition of CYP3A related first-pass metabolism. Ingestion of grapefruit and grapefruit juice should be avoided while taking nifedipine.
Clinical Studies
Nifedipine extended-release tablets produced dose related decreases in systolic and diastolic blood pressure as demonstrated in two double-blind, randomized, placebo-controlled trials in which over 350 patients were treated with nifedipine extended-release tablets 30 mg, 60 mg or 90 mg once daily for 6 weeks. In the first study, nifedipine extended-release tablets was given as monotherapy and in the second study, nifedipine extended-release tablets was added to a beta-blocker in patients not controlled on a beta-blocker alone. The mean trough (24 hours post-dose) blood pressure results from these studies are shown below:
Mean Reductions in Trough Supine Blood Pressure (mmHg) Systolic/Diastolic *
Placebo response subtracted.
Study 1
Nifedipine Extended-release
Tablets Dose N Mean Trough Reduction*
30 mg 60 5.3/2.9
60 mg 57 8/4.1
90 mg 55 12.5/8.1
Study 2
Nifedipine Extended-release
Tablets Dose N Mean Trough Reduction*
30 mg 58 7.6/3.8
60 mg 63 10.1/5.3
90 mg 62 10.2/5.8
The trough/peak ratios estimated from 24 hour blood pressure monitoring ranged from 41% to 78% for diastolic and 46% to 91% for systolic blood pressure.
Hemodynamics
Like other slow-channel blockers, nifedipine exerts a negative inotropic effect on isolated myocardial tissue. This is rarely, if ever, seen in intact animals or man, probably because of reflex responses to its vasodilating effects. In man, nifedipine decreases peripheral vascular resistance which leads to a fall in systolic and diastolic pressures, usually minimal in normotensive volunteers (less than 5 to 10 mm Hg systolic), but sometimes larger. With nifedipine extended-release tablets, these decreases in blood pressure are not accompanied by any significant change in heart rate. Hemodynamic studies of the immediate release nifedipine formulation in patients with normal ventricular function have generally found a small increase in cardiac index without major effects on ejection fraction, left ventricular end-diastolic pressure (LVEDP) or volume (LVEDV). In patients with impaired ventricular function, most acute studies have shown some increase in ejection fraction and reduction in left ventricular filling pressure.
Electrophysiologic Effects
Although, like other members of its class, nifedipine causes a slight depression of sinoatrial node function and atrioventricular conduction in isolated myocardial preparations, such effects have not been seen in studies in intact animals or in man. In formal electrophysiologic studies, predominantly in patients with normal conduction systems, nifedipine administered as the immediate release capsule has had no tendency to prolong atrioventricular conduction or sinus node recovery time, or |