.
12.3 Pharmacokinetics
Amlodipine
Peak plasma concentrations of amlodipine are reached 6-12 hours after administration of amlodipine alone. Absolute bioavailability has been estimated to be between 64% and 90%. The bioavailability of amlodipine is not altered by the presence of food.
The apparent volume of distribution of amlodipine is 21 L/kg. Approximately 93% of circulating amlodipine is bound to plasma proteins in hypertensive patients.
Amlodipine is extensively (about 90%) converted to inactive metabolites via hepatic metabolism with 10% of the parent compound and 60% of the metabolites excreted in the urine.
Elimination of amlodipine from the plasma is biphasic with a terminal elimination half-life of about 30-50 hours. Steady state plasma levels of amlodipine are reached after 7-8 days of consecutive daily dosing.
Valsartan
Following oral administration of valsartan alone peak plasma concentrations of valsartan are reached in 2-4 hours. Absolute bioavailability is about 25% (range 10%-35%). Food decreases the exposure (as measured by AUC) to valsartan by about 40% and peak plasma concentration (Cmax) by about 50%.
The steady state volume of distribution of valsartan after intravenous administration is 17 L indicating that valsartan does not distribute into tissues extensively. Valsartan is highly bound to serum proteins (95%), mainly serum albumin.
Valsartan shows bi-exponential decay kinetics following intravenous administration with an average elimination half-life of about 6 hours. The recovery is mainly as unchanged drug, with only about 20% of dose recovered as metabolites. The primary metabolite, accounting for about 9% of dose, is valeryl 4-hydroxy valsartan. In vitro metabolism studies involving recombinant CYP 450 enzymes indicated that the CYP 2C9 isoenzyme is responsible for the formation of valeryl-4-hydroxy valsartan. Valsartan does not inhibit CYP 450 isozymes at clinically relevant concentrations. CYP 450 mediated drug interaction between valsartan and co-administered drugs are unlikely because of the low extent of metabolism.
Valsartan, when administered as an oral solution, is primarily recovered in feces (about 83% of dose) and urine (about 13% of dose). Following intravenous administration, plasma clearance of valsartan is about 2 L/h and its renal clearance is 0.62 L/h (about 30% of total clearance).
Exforge
Following oral administration of Exforge in normal healthy adults, peak plasma concentrations of valsartan and amlodipine are reached in 3 and 6-8 hours, respectively. The rate and extent of absorption of valsartan and amlodipine from Exforge are the same as when administered as individual tablets. The bioavailabilities of amlodipine and valsartan are not altered by the co-administration of food.
Special Populations
Geriatric
Studies with Amlodipine:Elderly patients have decreased clearance of amlodipine with a resulting increase in AUC of approximately 40%-60%; therefore a lower initial dose of amlodipine may be required.
Studies with Valsartan:Exposure (measured by AUC) to valsartan is higher by 70% and the half-life is longer by 35% in the elderly than in the young. No dosage adjustment is necessary.
Gender
Studies with Valsartan:Pharmacokinetics of valsartan does not differ significantly between males and females.
Renal Insufficiency
Studies with Amlodipine:The pharmacokinetics of amlodipine is not significantly influenced by renal impairment. Patients with r |