allinarum
Listeria monocytogenes
Staphylococcus epidermidis (methicillin-susceptible and -resistant isolates)
Staphylococcus haemolyticus
Facultative Gram-negative bacteria
Acinetobacter baumannii*
Aeromonas hydrophila
Citrobacter koseri
Enterobacter aerogenes
Haemophilus influenzae (ampicillin-resistant)
Haemophilus parainfluenzae
Pasteurella multocida
Serratia marcescens
Stenotrophomonas maltophilia
Anaerobic bacteria
Bacteroides distasonis
Bacteroides ovatus
Peptostreptococcus spp.
Porphyromonas spp.
Prevotella spp.
Other bacteria
Mycobacterium abscessus
Mycobacterium fortuitum
*There have been reports of the development of tigecycline resistance in Acinetobacter infections seen during the course of standard treatment. Such resistance appears to be attributable to an MDR efflux pump mechanism. While monitoring for relapse of infection is important for all infected patients, more frequent monitoring in this case is suggested. If relapse is suspected, blood and other specimens should be obtained and cultured for the presence of bacteria. All bacterial isolates should be identified and tested for susceptibility to tigecycline and other appropriate antimicrobials.
Susceptibility Test Methods
When available, the clinical microbiology laboratory should provide cumulative results of the in vitro susceptibility test results for antimicrobial drugs used in local hospitals and practice areas to the physician as periodic reports that describe the susceptibility profile of nosocomial and community-acquired pathogens. These reports should aid the physician in selecting the most effective antimicrobial.
Dilution Techniques
Quantitative methods are used to determine antimicrobial minimum inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MICs should be determined using a standardized procedure based on dilution methods (broth, agar, or microdilution)1,3,4 or equivalent using standardized inoculum and concentrations of tigecycline. For broth dilution tests for aerobic organisms, MICs must be determined in testing medium that is fresh (<12h old). The MIC values should be interpreted according to the criteria provided in Table 4.
Diffusion Techniques
Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. The standardized procedure2,4 requires the use of standardized inoculum concentrations. This procedure uses paper disks impregnated with 15 mcg tigecycline to test the susceptibility of bacteria to tigecycline. Interpretation involves correlation of the diameter obtained in the disk test with the MIC for tigecycline. Reports from the laboratory providing results of the standard single-disk susceptibility test with a 15 mcg tigecycline disk should be interpreted according to the criteria in Table 4.
Anaerobic Techniques
Anaerobic susceptibility testing with tigecycline should be done by the agar dilution method3 since quality control parameters for broth-dilution are not established.
Table 4. Susceptibility Test Result Interpretive Criteria for Tigecycline Minimum Inhibitory
Concentrations (mcg/mL) Disk Diffusion
(zone diameters in mm)
Pathogen S&n |