harmacodynamics
The exposure-response or –safety relationship for cabozantinib is unknown.
Cardiac Electrophysiology
The effect of orally administered cabozantinib on QTc interval was eva luated in a randomized, double-blinded, placebo-controlled study in patients with medullary thyroid cancer administered a dose of 140 mg. A mean increase in QTcF of 10 - 15 ms was observed at 4 weeks after initiating cabozantinib. A concentration-QTc relationship could not be definitively established. Changes in cardiac wave form morphology or new rhythms were not observed. No cabozantinib-treated patients in this study had a confirmed QTcF > 500 ms nor did any cabozantinib-treated patients in the RCC study (at a dose of 60 mg).
12.3 Pharmacokinetics
Repeat daily dosing of cabozantinib at 140 mg for 19 days resulted in 4- to 5-fold mean cabozantinib accumulation (based on AUC) compared to a single dose administration; steady state was achieved by Day 15.
Absorption
Following oral administration of cabozantinib, median time to peak cabozantinib plasma concentrations (Tmax) ranged from 2 to 3 hours post-dose.
A 19% increase in the Cmax of the tablet formulation (CABOMETYX) compared to the capsule formulation (COMETRIQ®) was observed following a single 140 mg dose. A less than 10% difference in the AUC was observed between cabozantinib tablet (CABOMETYX) and capsule (COMETRIQ) formulations [see DOSAGE AND ADMINISTRATION (2.1)].
Cabozantinib Cmax and AUC values increased by 41% and 57%, respectively, following a high-fat meal relative to fasted conditions in healthy subjects administered a single 140 mg oral dose of an investigational cabozantinib capsule formulation.
Distribution
The oral volume of distribution (Vz/F) of cabozantinib is approximately 319 L. Cabozantinib is highly protein bound in human plasma (≥ 99.7%).
Elimination
The predicted terminal half-life is approximately 99 hours and the clearance (CL/F) at steady-state is estimated to be 2.2 L/hr.
Metabolism
Cabozantinib is a substrate of CYP3A4 in vitro.
Excretion
Approximately 81% of the total administered radioactivity was recovered within a 48-day collection period following a single 140 mg dose of an investigational 14C-cabozantinib formulation in healthy subjects. Approximately 54% was recovered in feces and 27% in urine. Unchanged cabozantinib accounted for 43% of the total radioactivity in feces and was not detectable in urine following a 72 hour collection.
Specific Populations
The following patient characteristics did not result in a clinically relevant difference in the pharmacokinetics of cabozantinib: age (32-86 years), sex, race (Whites and non-Whites), or mild to moderate renal impairment (eGFR greater than or equal to 30 mL/min/1.73 m2 as estimated by MDRD (modification of diet in renal disease equation)). The pharmacokinetics of cabozantinib is unknown in patients with worse than moderate renal impairment (eGFR less than 29 mL/min/1.73m2) as estimated by MDRD equation or renal impairment requiring dialysis.
Hepatic Impairment
Cabozantinib exposure (AUC0-inf) increased by 81% and 63%, respectively, in patients with mild (C-P A) and moderate (C-P B) hepatic impairment. Patients with severe hepatic impairment have not been studied [see DOSAGE AND ADMINISTRATION (2.2), USE IN SPECIFC POPULATIONS (8.6)].
Pediatric Population
The pharmacokinetics of cabozantinib has not been studied in the pediatric population [see USE IN SPEC |