s, (such as oxybutynin, darifenacin, trospium, fesoterodine, tolerodine, or solifenacin), do not routinely cause problems with medications used for dementia, but may cause anticholinergic side effects in some patients. Atropine may be used to offset bradycardia in cholinesterase inhibitor overdose.
Doxylamine: The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
Doxylamine; Pyridoxine: The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
Dronabinol, THC: Use caution if coadministration of dronabinol with anticholinergics is necessary. Concurrent use of dronabinol, THC with anticholinergics may result in additive drowsiness, hypertension, tachycardia, and possibly cardiotoxicity.
Edrophonium: Coadministration of Atropine and Edrophonium Chloride can produce mutually antagonistic effects.
Eluxadoline: Avoid use of eluxadoline with medications that may cause constipation, such as anticholinergics. Discontinue use of eluxadoline in patients who develop severe constipation lasting more than 4 days.
Ephedrine: Atropine can potentiate the pressor effects of ephedra alkaloids. Atropine is thought to block the compensatory reflex sinus bradycardia normally seen after the administration of ephedrine, the primary alkaloid found in ephedra, ma huang and consequently can increase pressor response.
Erythromycin: Anticholinergics can antagonize the stimulatory effects of erythromycin on the GI tract (when erythromycin is used therapeutically for improving GI motility). Avoid chronic administration of antimuscarinics along with prokinetic agents under most circumstances. In addition, erythromycin is a CYP3A4 inhibitor and can reduce the metabolism of drugs metabolized by CYP3A4, including some anticholinergics.
Erythromycin; Sulfisoxazole: Anticholinergics can antagonize the stimulatory effects of erythromycin on the GI tract (when erythromycin is used therapeutically for improving GI motility). Avoid chronic administration of antimuscarinics along with prokinetic agents under most circumstances. In addition, erythromycin is a CYP3A4 inhibitor and can reduce the metabolism of drugs metabolized by CYP3A4, including some anticholinergics.
Ezogabine: Caution is advisable during concurrent use of ezogabine and medications that may affect voiding such as anticholinergic agents. Ezogabine has caused urinary retention requiring catheterization in some cases. The anticholinergic effects of antimuscariinic and anticholinergic medications on the urinary tract may be additive. Additive sedation or other CNS effects may also occur.
Fentanyl: Opiate agonists should be used cautiously with antimuscarinics since additive depressive effects on GI motility or bladder function may been seen. Opioids increase the tone and decrease the propulsive contractions of the sm |