nistered with 500 mg acetylsalicylic acid.
Clopidogrel (300 mg loading dose followed by 75 mg maintenance dose) did not show a pharmacokinetic interaction with rivaroxaban (15 mg) but a relevant increase in bleeding time was observed in a subset of patients which was not correlated to platelet aggregation, P-selectin or GPIIb/IIIa receptor levels.
Care is to be taken if patients are treated concomitantly with NSAIDs (including acetylsalicylic acid) and platelet aggregation inhibitors because these medicinal products typically increase the bleeding risk (see section 4.4).
Warfarin
Converting patients from the vitamin K antagonist warfarin (INR 2.0 to 3.0) to rivaroxaban (20 mg) or from rivaroxaban (20 mg) to warfarin (INR 2.0 to 3.0) increased prothrombin time/INR (Neoplastin) more than additively (individual INR values up to 12 may be observed), whereas effects on aPTT, inhibition of factor Xa activity and endogenous thrombin potential were additive.
If it is desired to test the pharmacodynamic effects of rivaroxaban during the conversion period, anti-factor Xa activity, PiCT, and Heptest can be used as these tests were not affected by warfarin. On the fourth day after the last dose of warfarin, all tests (including PT, aPTT, inhibition of factor Xa activity and ETP) reflected only the effect of rivaroxaban.
If it is desired to test the pharmacodynamic effects of warfarin during the conversion period, INR measurement can be used at the Ctrough of rivaroxaban (24 hours after the previous intake of rivaroxaban) as this test is minimally affected by rivaroxaban at this time point.
No pharmacokinetic interaction was observed between warfarin and rivaroxaban.
CYP3A4 inducers
Co-administration of rivaroxaban with the strong CYP3A4 inducer rifampicin led to an approximate 50 % decrease in mean rivaroxaban AUC, with parallel decreases in its pharmacodynamic effects. The concomitant use of rivaroxaban with other strong CYP3A4 inducers (e.g. phenytoin, carbamazepine, phenobarbital or St. John's Wort (Hypericum perforatum)) may also lead to reduced rivaroxaban plasma concentrations. Therefore, concomitant administration of strong CYP3A4 inducers should be avoided unless the patient is closely observed for signs and symptoms of thrombosis.
Other concomitant therapies
No clinically significant pharmacokinetic or pharmacodynamic interactions were observed when rivaroxaban was co-administered with midazolam (substrate of CYP3A4), digoxin (substrate of P-gp), atorvastatin (substrate of CYP3A4 and P-gp) or omeprazole (proton pump inhibitor). Rivaroxaban neither inhibits nor induces any major CYP isoforms like CYP3A4.
Laboratory parameters
Clotting parameters (e.g. PT, aPTT, HepTest) are affected as expected by the mode of action of rivaroxaban (see section 5.1).
4.6 Fertility, pregnancy and breast feeding
Pregnancy
Safety and efficacy of Xarelto have not been established in pregnant women. Studies in animals have shown reproductive toxicity (see section 5.3). Due to the potential reproductive toxicity, the intrinsic risk of bleeding and the evidence that rivaroxaban passes the placenta, Xarelto is contraindicated during pregnancy (see section 4.3).
Women of child-bearing potential should avoid becoming pregnant during treatment with rivaroxaban.
Breast feeding
Safety and efficacy of Xarelto have not been established in breast feeding women. Data fro