localises at the brush border of the small intestine and inhibits the absorption of cholesterol, leading to a decrease in the delivery of intestinal cholesterol to the liver; statins reduce cholesterol synthesis in the liver and together these distinct mechanisms provide complementary cholesterol reduction. In a 2-week clinical study in 18 hypercholesterolaemic patients, ezetimibe inhibited intestinal cholesterol absorption by 54%, compared with placebo.
A series of preclinical studies was performed to determine the selectivity of ezetimibe for inhibiting cholesterol absorption. Ezetimibe inhibited the absorption of [14C]-cholesterol with no effect on the absorption of triglycerides, fatty acids, bile acids, progesterone, ethinyl estradiol, or fat soluble vitamins A and D.
Atorvastatin
Atorvastatin is a selective, competitive inhibitor of HMG-CoA reductase, the rate-limiting enzyme responsible for the conversion of 3-hydroxy-3-methyl-glutaryl-coenzyme A to meva lonate, a precursor of sterols, including cholesterol. Triglycerides and cholesterol in the liver are incorporated into very low-density lipoproteins (VLDL) and released into the plasma for delivery to peripheral tissues. Low-density lipoprotein (LDL) is formed from VLDL and is catabolized primarily through the receptor with high affinity to LDL (LDL receptor).
Atorvastatin lowers plasma cholesterol and lipoprotein serum concentrations by inhibiting HMG-CoA reductase and subsequently cholesterol biosynthesis in the liver and increases the number of hepatic LDL receptors on the cell surface for enhanced uptake and catabolism of LDL.
Atorvastatin reduces LDL production and the number of LDL particles. Atorvastatin produces a profound and sustained increase in LDL receptor activity coupled with a beneficial change in the quality of circulating LDL particles. Atorvastatin is effective in reducing LDL-C in patients with homozygous familial hypercholesterolaemia, a population that has not usually responded to lipid-lowering medicinal products.
Atorvastatin has been shown to reduce concentrations of total-C (30% - 46%), LDL-C (41% - 61%), apolipoprotein B (34% - 50%), and triglycerides (14% - 33%) while producing variable increases in HDL-C and apolipoprotein A1 in a dose response study. These results are consistent in patients with heterozygous familial hypercholesterolaemia, nonfamilial forms of hypercholesterolaemia, and mixed hyperlipidaemia, including patients with noninsulin-dependent diabetes mellitus.
Clinical efficacy and safety
In controlled clinical studies, ATOZET significantly reduced total-C, LDL-C, Apo B, and TG, and increased HDL-C in patients with hypercholesterolaemia.
Primary Hypercholesterolaemia
In a placebo-controlled study, 628 patients with hyperlipidaemia were randomised to receive placebo, ezetimibe (10 mg), atorvastatin (10 mg, 20 mg, 40 mg, or 80 mg), or coadministered ezetimibe and atorvastatin equivalent to ATOZET (10/10, 10/20, 10/40, and 10/80)for up to 12-weeks .
Patients receiving all doses of ATOZET were compared to those receiving all doses of atorvastatin. ATOZET lowered total-C, LDL-C, Apo B, TG, and non-HDL-C, and increased HDL-C significantly more than atorvastatin alone. (See Table 3.)
Table 3
Response to ATOZET in Patients with Primary Hyperlipidaemia
(Meana % Change from Untreated Baselineb at 12 weeks)
Treatment
(Daily Dose)
N
Total-C
  |