etic interactions between atovaquone and proguanil at the recommended dose. In clinical trials, where children have received Malarone dosed by bodyweight, trough levels of atovaquone, proguanil and cycloguanil in children are generally within the range observed in adults.
Absorption
Atovaquone is a highly lipophilic compound with low aqueous solubility. In HIV-infected patients, the absolute bioavailability of a 750 mg single dose of atovaquone tablets taken with food is 23% with an inter-subject variability of about 45%.
Dietary fat taken with atovaquone increases the rate and extent of absorption, increasing AUC 2-3 times and Cmax 5 times over fasting. Patients are recommended to take Malarone tablets with food or a milky drink (see section 4.2).
Proguanil hydrochloride is rapidly and extensively absorbed regardless of food intake.
Distribution
Apparent volume of distribution of atovaquone and proguanil is a function of bodyweight.
Atovaquone is highly protein bound (>99%) but does not displace other highly protein bound drugs in vitro, indicating significant drug interactions arising from displacement are unlikely.
Following oral administration, the volume of distribution of atovaquone in adults and children is approximately 8.8 L/kg.
Proguanil is 75% protein bound. Following oral administration, the volume of distribution of proguanil in adults and children ranged from 20 to 42 L/kg.
In human plasma the binding of atovaquone and proguanil was unaffected by the presence of the other.
Biotransformation
There is no evidence that atovaquone is metabolised and there is negligible excretion of atovaquone in urine with the parent drug being predominantly (>90%) eliminated unchanged in faeces.
Proguanil hydrochloride is partially metabolised, primarily by the polymorphic cytochrome P450 isoenzyme 2C19, with less than 40% being excreted unchanged in the urine. Its metabolites, cycloguanil and 4-chlorophenylbiguanide, are also excreted in the urine.
During administration of Malarone at recommended doses proguanil metabolism status appears to have no implications for treatment or prophylaxis of malaria.
Elimination
The elimination half life of atovaquone is about 2-3 days in adults and 1-2 days in children.
The elimination half lives of proguanil and cycloguanil are about 12-15 hours in both adults and children.
Oral clearance for atovaquone and proguanil increases with increased bodyweight and is about 70% higher in an 80 kg subject relative to a 40 kg subject. The mean oral clearance in paediatric and adult patients weighing 10 to 80 kg ranged from 0.8 to 10.8 L/h for atovaquone and from 15 to 106 L/h for proguanil.
Pharmacokinetics in the elderly
There is no clinically significant change in the average rate or extent of absorption of atovaquone or proguanil between elderly and young patients. Systemic availability of cycloguanil is higher in the elderly compared to the young patients (AUC is increased by 140% and Cmax is increased by 80%), but there is no clinically significant change in its elimination half life (see section 4.2).
Pharmacokinetics in renal impairment
In patients with mild to moderate renal impairment, oral clearance and/or AUC data for atovaquone, proguanil and cycloguanil are within the range of values observed in patients with normal renal function.
Atovaquone Cmax and AUC are reduced by 64% and 54%, respectivel