bution
The mean volume of distribution at steady state following a single 100 mg intravenous dose of sitagliptin to healthy subjects is approximately 198 liters. The fraction of sitagliptin reversibly bound to plasma proteins is low (38%).
Metabolism
Approximately 79% of sitagliptin is excreted unchanged in the urine with metabolism being a minor pathway of elimination.
Following a [14C]sitagliptin oral dose, approximately 16% of the radioactivity was excreted as metabolites of sitagliptin. Six metabolites were detected at trace levels and are not expected to contribute to the plasma DPP-4 inhibitory activity of sitagliptin. In vitro studies indicated that the primary enzyme responsible for the limited metabolism of sitagliptin was CYP3A4, with contribution from CYP2C8.
Excretion
Following administration of an oral [14C]sitagliptin dose to healthy subjects, approximately 100% of the administered radioactivity was eliminated in feces (13%) or urine (87%) within one week of dosing. The apparent terminal t1/2 following a 100 mg oral dose of sitagliptin was approximately 12.4 hours and renal clearance was approximately 350 mL/min.
Elimination of sitagliptin occurs primarily via renal excretion and involves active tubular secretion. Sitagliptin is a substrate for human organic anion transporter-3 (hOAT-3), which may be involved in the renal elimination of sitagliptin. The clinical relevance of hOAT-3 in sitagliptin transport has not been established. Sitagliptin is also a substrate of p-glycoprotein, which may also be involved in mediating the renal elimination of sitagliptin. However, cyclosporine, a p-glycoprotein inhibitor, did not reduce the renal clearance of sitagliptin.
Special Populations
Renal Insufficiency
A single-dose, open-label study was conducted to eva luate the pharmacokinetics of JANUVIA (50 mg dose) in patients with varying degrees of chronic renal insufficiency compared to normal healthy control subjects. The study included patients with renal insufficiency classified on the basis of creatinine clearance as mild (50 to <80 mL/min), moderate (30 to <50 mL/min), and severe (<30 mL/min), as well as patients with ESRD on hemodialysis. In addition, the effects of renal insufficiency on sitagliptin pharmacokinetics in patients with type 2 diabetes and mild or moderate renal insufficiency were assessed using population pharmacokinetic analyses. Creatinine clearance was measured by 24‑hour urinary creatinine clearance measurements or estimated from serum creatinine based on the Cockcroft-Gault formula:
CrCl = [140 - age (years)] x weight (kg) {x 0.85 for female patients}
[72 x serum creatinine (mg/dL)]
Compared to normal healthy control subjects, an approximate 1.1- to 1.6-fold increase in plasma AUC of sitagliptin was observed in patients with mild renal insufficiency. Because increases of this magnitude are not clinically relevant, dosage adjustment in patients with mild renal insufficiency is not necessary. Plasma AUC levels of sitagliptin were increased approximately 2-fold and 4-fold in patients with moderate renal insufficiency and in patients with severe renal insufficiency, including patients with ESRD on hemodialysis, respectively. Sitagliptin was modestly removed by hemodialysis (13.5% over a 3- to 4-hour hemodialysis session starting 4 hours postdose). To achieve plasma concentrati |