bstrate and an inhibitor of P-gp.
Breast Cancer Resistance Protein (BCRP): Based on in vitro data, afatinib is a substrate and an inhibitor of the transporter BCRP.
Effect of CYP450 Enzyme Inducers and Inhibitors on Afatinib: In vitro data indicated that drug-drug interactions with Gilotrif due to inhibition or induction of CYP450 enzymes by concomitant medications are unlikely. The metabolites formed by CYP450-dependent reactions were approximately 9% of the total metabolic turnover in sandwich-cultured human hepatocytes. In humans, enzyme-catalyzed metabolic reactions play a negligible role for the metabolism of afatinib. Approximately 2% of the afatinib dose was metabolized by FMO3; the CYP3A4-dependent N-demethylation was not detected.
Effect of Afatinib on CYP450 Enzymes: Afatinib is not an inhibitor or an inducer of CYP450 enzymes (CYP1A2, 2B6, 2C8, 2C9, 2C19, and 3A4) in cultured primary human hepatocytes. Therefore, afatinib is unlikely to affect the metabolism of other drugs that are substrates of CYP450 enzymes.
13 NONCLINICAL TOXICOLOGY
Carcinogenesis, Mutagenesis, Impairment of Fertility
Carcinogenicity studies have not been conducted with afatinib.
A marginal response to afatinib was observed in a single tester strain of a bacterial (Ames) mutagenicity assay. No mutagenic or genotoxic potential was identified in an in vitro chromosomal aberration test at non-cytotoxic concentrations as well as in the in vivo bone marrow micronucleus assay, the in vivo Comet assay, and an in vivo 4-week oral mutation study in the Muta™ Mouse.
In a dedicated fertility study, male and female rats received afatinib daily by the oral administration at doses of 4, 6, or 8 mg/kg. In males at doses of 6 mg/kg (approximately equal to the exposure by AUC in patients at the recommended human dose of 40 mg daily) or greater, there was an increase in the incidence of low or no sperm count, though overall fertility was not affected; decreases in sperm count were supported by findings of increased apoptosis in the testes and atrophy in the seminal vesicles and the prostate in general toxicology studies. In females at the high dose of 8 mg/kg (approximately 0.63 times the exposure by AUC in patients at the recommended human dose of 40 mg daily), there was a mild decrease in the number of corpora lutea along with a mild increase in post-implantation loss due to early resorptions. In a 4-week general toxicology study, female rats had decreases in ovarian weights at all dose levels; organ weight had not fully recovered by the end of a 2-week recovery period.
14 CLINICAL STUDIES
Non-small Cell Lung Cancer (NSCLC)
Study 1
The efficacy and safety of Gilotrif in the first-line treatment of 345 patients with EGFR mutation-positive, metastatic (Stage IV and Stage IIIb with pleural and/or pericardial effusion as classified by the American Joint Commission on Cancer [AJCC, 6th edition]) NSCLC were established in a randomized, multicenter, open-label trial (Study 1). Patients were randomized (2:1) to receive Gilotrif 40 mg orally once daily (n=230) or up to 6 cycles of pemetrexed/cisplatin (n=115). Randomization was stratified according to EGFR mutation status (exon 19 deletion vs exon 21 L858R vs other) and race (Asian vs non-Asian). The major efficacy outcome was progression-free survival (PFS) as assessed by an independent review committee (IRC). Other efficacy outcomes included objective response rate (ORR) and overall survival (OS). EGFR |