eceptors whereas norquetiapine has high affinity. Quetiapine and norquetiapine lack appreciable affinity for benzodiazepine receptors.
Receptor Affinities (Ki, nM) for Quetiapine and Norquetiapine Receptor Quetiapine Norquetiapine
Dopamine D1
428
99.8
Dopamine D2
626
489
Serotonin 5HT1A
1040
191
Serotonin 5HT2A
38
2.9
Norepinephrine transporter
>10000
34.8
Histamine H1
4.41
1.15
Adrenergic α1b
14.6
46.4
Adrenergic α2
617
1290
Muscarinic M1
1086
38.3
Benzodiazepine
>10000
> 10000
12.3 Pharmacokinetics
Following multiple dosing of quetiapine up to a total daily dose of 800 mg, administered in divided doses, the plasma concentration of quetiapine and norquetiapine, the major active metabolite of quetiapine, were proportional to the total daily dose. Accumulation is predictable upon multiple dosing. Steady-state mean Cmax and AUC of norquetiapine are about 21-27% and 46-56%, respectively of that observed for quetiapine. Elimination of quetiapine is mainly via hepatic metabolism. The mean-terminal half-life is approximately 7 hours for quetiapine and approximately 12 hours for norquetiapine within the clinical dose range. Steady-state concentrations are expected to be achieved within two days of dosing. SEROQUEL XR is unlikely to interfere with the metabolism of drugs metabolized by cytochrome P450 enzymes.
Absorption
Quetiapine fumarate reaches peak plasma concentrations approximately 6 hours following administration. SEROQUEL XR dosed once daily at steady-state has comparable bioavailability to an equivalent total daily dose of SEROQUEL administered in divided doses, twice daily. A high-fat meal (approximately 800 to 1000 calories) was found to produce statistically significant increases in the SEROQUEL XR Cmax and AUC of 44% to 52% and 20% to 22%, respectively, for the 50 mg and 300 mg tablets. In comparison, a light meal (approximately 300 calories) had no significant effect on the Cmax or AUC of quetiapine. It is recommended that SEROQUEL XR be taken without food or with a light meal [see Dosage and Administration (2)].
Distribution
Quetiapine is widely distributed throughout the body with an apparent volume of distribution of 10±4 L/kg. It is 83% bound to plasma proteins at therapeutic concentrations. In vitro, quetiapine did not affect the binding of warfarin or diazepam to human serum albumin. In turn, neither warfarin nor diazepam altered the binding of quetiapine.
Metabolism and Elimination
Following a single oral dose of 14C-quetiapine, less than 1% of the administered dose was excreted as unchanged drug, indicating that quetiapine is highly metabolized. Approximately 73% and 20% of the dose was recovered in the urine and feces, respectively. The average dose fraction of free quetiapine and its major active metabolite is <5% excreted in the urine.
Quetiapine is extensively metabolized by the liver. The major metabolic pathways are sulfoxidation to the sulfoxide metabolite and oxidation to the parent acid metabolite; both metabolites are pharmacologically inactive. In vitro studies using human liver microsomes reveal