emolysis, hypercoagulation, coagulopathy, monocytopenia, leucocytosis, lymphadenopathy
Haemorrhagic disorders
Haemorrhagic disorders are listed under several system organ classes: Blood and lymphatic system disorders; nervous system disorders (intracranial haemorrhage); respiratory, thoracic and mediastinal disorders (epistaxis); gastrointestinal disorders (gingival bleeding, haemorrhoidal haemorrhage, rectal haemorrhage); renal and urinary disorders (haematuria); Injury, poisoning and procedural complications (contusion) and vascular disorders (ecchymosis).
Allergic Reactions
Cases of allergic reaction/hypersensitivity reactions have been reported. A possible cross-reaction between lenalidomide and thalidomide has been reported in the literature.
Severe skin reactions
Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) have been reported. Patients with a history of severe rash associated with thalidomide treatment should not receive lenalidomide.
4.9 Overdose
There is no specific experience in the management of lenalidomide overdose in multiple myeloma patients, although in dose-ranging studies some patients were exposed to up to 150 mg, and in single-dose studies, some patients were exposed to up to 400 mg. The dose limiting toxicity in these studies was essentially haematological. In the event of overdose, supportive care is advised.
5. PHARMACOLOGICAL PROPERTIES
5.1 Pharmacodynamic properties
Pharmacotherapeutic group: Immunomodulating agent. ATC code: L04 AX04.
The lenalidomide mechanism of action includes anti-neoplastic, anti-angiogenic, pro-erythropoietic, and immunomodulatory properties. Specifically, lenalidomide inhibits proliferation of certain haematopoietic tumour cells (including MM plasma tumour cells and those with deletions of chromosome 5), enhances T cell- and Natural Killer (NK) cell-mediated immunity and increases the number of NK T cells, inhibits angiogenesis by blocking the migration and adhesion of endothelial cells and the formation of microvessels, augments foetal haemoglobin production by CD34+ haematopoietic stem cells, and inhibits production of pro-inflammatory cytokines (e.g., TNF-α and IL6) by monocytes.
Clinical trials
The efficacy and safety of lenalidomide were eva luated in two Phase III multi-centre, randomised, double-blind, placebo-controlled, parallel-group controlled studies (MM-009 and MM-010) of lenalidomide plus dexamethasone therapy versus dexamethasone alone in previously treated patients with multiple myeloma. Out of 353 patients in the MM-009 and MM-010 studies who received lenalidomide/dexamethasone, 45.6% were aged 65 or over. Of the 704 patients eva luated in the MM-009 and MM-010 studies, 44.6% were aged 65 or over.
In both studies, patients in the lenalidomide/dexamethasone (len/dex) group took 25 mg of lenalidomide orally once daily on Days 1 to 21 and a matching placebo capsule once daily on Days 22 to 28 of each 28-day cycle. Patients in the placebo/dexamethasone (placebo/dex) group took 1 placebo capsule on Days 1 to 28 of each 28-day cycle. Patients in both treatment groups took 40 mg of dexamethasone orally once daily on Days 1 to 4, 9 to 12, and 17 to 20 of each 28-day cycle for the first 4 cycles of therapy. The dose of dexamethasone was reduced to 40 mg orally once daily on Days 1 to 4 of each 28-day cycle after the first 4 cycles of t