evice (containing placebo) compared with inhalation from an already marketed multi-dose dry powder inhaler device(containing placebo). The impact of enhanced training in dry powder inhaler inhalation technique on inhalation speed and volume was also assessed in these subject groups. The data from the study indicated that regardless of age and underlying disease severity, children, adolescents and adults with asthma as well as patients with COPD were able to able to achieve inspiratory flow rates through the Spiromax device that were similar to those generated through the marketed multi-dose dry powder inhaler device. The mean PIFR achieved by patients with asthma or COPD was over 60L/min, a flow rate at which both devices studied are known to deliver comparable amounts of drug to the lungs. Very few patients had PIFRs below 40L/min; when PIFRs were less than 40L/min there appeared to be no clustering by age or disease severity.
5.2 Pharmacokinetic properties
Absorption
The fixed-dose combination of budesonide and formoterol, and the corresponding monoproducts have been shown to be bioequivalent with regard to systemic exposure of budesonide and formoterol, respectively. In spite of this, a small increase in cortisol suppression was seen after administration of fixed-dose combination compared to the monoproducts. The difference is considered not to have an impact on clinical safety.
There was no evidence of pharmacokinetic interactions between budesonide and formoterol.
Pharmacokinetic parameters for the respective substances were comparable after the administration of budesonide and formoterol as monoproducts or as the fixed-dose combination. For budesonide, AUC was slightly higher, rate of absorption more rapid and maximal plasma concentration higher after administration of the fixed combination. For formoterol, maximal plasma concentration was similar after administration of the fixed combination. Inhaled budesonide is rapidly absorbed and the maximum plasma concentration is reached within 30 minutes after inhalation. In studies, mean lung deposition of budesonide after inhalation via the powder inhaler ranged from 32% to 44% of the delivered dose. The systemic bioavailability is approximately 49% of the delivered dose. In children 6-16 years of age the lung deposition falls in the same range as in adults for the same given dose. The resulting plasma concentrations were not determined.
Inhaled formoterol is rapidly absorbed and the maximum plasma concentration is reached within 10 minutes after inhalation. In studies the mean lung deposition of formoterol after inhalation via the powder inhaler ranged from 28% to 49% of the delivered dose. The systemic bioavailability is about 61% of the delivered dose.
Distribution
Plasma protein binding is approximately 50% for formoterol and 90% for budesonide. Volume of distribution is about 4 L/kg for formoterol and 3 L/kg for budesonide. Formoterol is inactivated via conjugation reactions (active O-demethylated and deformylated metabolites are formed, but they are seen mainly as inactivated conjugates). Budesonide undergoes an extensive degree (approximately 90%) of biotransformation on first passage through the liver to metabolites of low glucocorticosteroid activity. The glucocorticosteroid activity of the major metabolites, 6-beta-hydroxy-budesonide and 16-alfa-hydroxy-prednisolone, is less than 1% of that of budesonide. There are no indications of any metabolic interact |