yrotropin alfa (recombinant human thyroid stimulating hormone) is a heterodimeric glycoprotein produced by recombinant DNA technology. It is comprised of two non-covalently linked subunits. The cDNAs encode for an alpha subunit of 92 amino acid residues containing two N-linked glycosylation sites, and a beta subunit of 118 residues containing one N-linked glycosylation site. It has comparable biochemical properties to natural human Thyroid Stimulating Hormone (TSH). Binding of thyrotropin alfa to TSH receptors on thyroid epithelial cells stimulates iodine uptake and organification, and synthesis and release of thyroglobulin, triiodothyronine (T3) and thyroxine (T4).
In patients with well-differentiated thyroid cancer, a near total or total thyroidectomy is performed. For optimal diagnosis of thyroid remnants or cancer via either radioiodine imaging or thyroglobulin testing and for radioiodine therapy of thyroid remnants, a high serum level of TSH is needed to stimulate either radioiodine uptake and/or thyroglobulin release. The standard approach to achieve elevated TSH levels has been to withdraw patients from thyroid hormone suppression therapy (THST), which usually causes patients to experience the signs and symptoms of hypothyroidism. With the use of Thyrogen, the TSH stimulation necessary for radioiodine uptake and thyroglobulin release is achieved while patients are maintained euthyroid on THST, thus avoiding the morbidity associated with hypothyroidism.
Diagnostic use
The efficacy and safety of Thyrogen for use with radioiodine imaging together with serum thyroglobulin testing for the diagnosis of thyroid remnants and cancer was demonstrated in two studies. In one of the studies, two dose regimens were examined: 0.9 mg intramuscular every 24 hours for two doses (0.9 mg x 2) and 0.9 mg intramuscular every 72 hours for three doses (0.9 mg x 3). Both dose regimens were effective and not statistically different from thyroid hormone withdrawal in stimulating radioiodine uptake for diagnostic imaging. Both dose regimens improved the sensitivity, accuracy and negative predictive value of Thyrogen-stimulated thyroglobulin alone or in combination with radioiodine imaging as compared to testing performed while patients remained on thyroid hormones.
In clinical trials, for the detection of thyroid remnants or cancer in ablated patients using a thyroglobulin assay with a lower limit of detection of 0.5 ng/ml, Thyrogen-stimulated thyroglobulin levels of 3 ng/ml, 2 ng/ml and 1 ng/ml corresponded with thyroglobulin levels after withdrawal of thyroid hormone of 10 ng/ml, 5 ng/ml and 2 ng/ml, respectively. In these studies the use of thyroglobulin testing on Thyrogen was found to be more sensitive than thyroglobulin testing on TSHT. Specifically in a Phase III study involving 164 patients the detection rate of tissue of thyroid origin after a Thyrogen thyroglobulin test ranged from 73-87%, whereas, by using thyroglobulin on TSHT it was 42-62% for the same cut-off values and comparable reference standards.
Metastatic disease was confirmed by a post-treatment scan or by lymph node biopsy in 35 patients. Thyrogen-stimulated thyroglobulin levels were above 2 ng/ml in all 35 patients, whereas, thyroglobulin on THST was above 2 ng/ml in 79% of these patients.
Pre-therapeutic stimulation
In a comparator study involving 60 eva luable patients, the rates of successful ablation of thyroid remnants with 100 mCi/3.7 GBq (± 10%) radioiodine in p |