rifampicin treatment. Similar results were observed in patients with malignant gliomas treated with Glivec while taking enzyme-inducing anti-epileptic drugs (EIAEDs) such as carbamazepine, oxcarbazepine and phenytoin. The plasma AUC for imatinib decreased by 73% compared to patients not on EIAEDs. Concomitant use of rifampicin or other strong CYP3A4 inducers and imatinib should be avoided.
Active substances that may have their plasma concentration altered by Glivec
Imatinib increases the mean Cmax and AUC of simvastatin (CYP3A4 substrate) 2- and 3.5-fold, respectively, indicating an inhibition of the CYP3A4 by imatinib. Therefore, caution is recommended when administering Glivec with CYP3A4 substrates with a narrow therapeutic window (e.g. cyclosporine, pimozide, tacrolimus, sirolimus, ergotamine, diergotamine, fentanyl, alfentanil, terfenadine, bortezomib, docetaxel and quinidine). Glivec may increase plasma concentration of other CYP3A4 metabolised drugs (e.g. triazolo-benzodiazepines, dihydropyridine calcium channel blockers, certain HMG-CoA reductase inhibitors, i.e. statins, etc.).
Because of known increased risks of bleeding in conjunction with the use of imatinib (e.g. haemorrhage), patients who require anticoagulation should receive low-molecular-weight or standard heparin, instead of coumarin derivatives such as warfarin.
In vitro Glivec inhibits the cytochrome P450 isoenzyme CYP2D6 activity at concentrations similar to those that affect CYP3A4 activity. Imatinib at 400 mg twice daily had an inhibitory effect on CYP2D6-mediated metoprolol metabolism, with metoprolol Cmax and AUC being increased by approximately 23% (90%CI [1.16-1.30]). Dose adjustments do not seem to be necessary when imatinib is co-administrated with CYP2D6 substrates, however caution is advised for CYP2D6 substrates with a narrow therapeutic window such as metoprolol. In patients treated with metoprolol clinical monitoring should be considered.
In vitro, Glivec inhibits paracetamol O-glucuronidation with Ki value of 58.5 micromol/l. This inhibition has not been observed in vivo after the administration of Glivec 400 mg and paracetamol 1000 mg. Higher doses of Glivec and paracetamol have not been studied.
Caution should therefore be exercised when using high doses of Glivec and paracetamol concomitantly.
In thyroidectomy patients receiving levothyroxine, the plasma exposure to levothyroxine may be decreased when Glivec is co-administered (see section 4.4). Caution is therefore recommended. However, the mechanism of the observed interaction is presently unknown.
In Ph+ ALL patients, there is clinical experience of co-administering Glivec with chemotherapy (see section 5.1), but drug-drug interactions between imatinib and chemotherapy regimens are not well characterised. Imatinib adverse events, i.e. hepatotoxicity, myelosuppression or others, may increase and it has been reported that concomitant use with L-asparaginase could be associated with increased hepatotoxicity (see section 4.8). Therefore, the use of Glivec in combination requires special precaution.
4.6 Fertility, pregnancy and lactation
Women of childbearing potential
Women of childbearing potential must be advised to use effective contraception during treatment.
Pregnancy
There are limited data on the use of imatinib in pregnant women. Studies in animals have however shown reproductive toxicity (see section 5.3) and |