take (150 mEq/day).
The pharmacokinetic profile and diuretic activity of torsemide are not altered by cimetidine or spironolactone. Coadministration of digoxin is reported to increase the area under the curve for torsemide by 50%, but dose adjustment of DEMADEX is not necessary.
Concomitant use of torsemide and cholestyramine has not been studied in humans but, in a study in animals, coadministration of cholestyramine decreased the absorption of orally administered torsemide. If DEMADEX and cholestyramine are used concomitantly, simultaneous administration is not recommended.
Coadministration of probenecid reduces secretion of DEMADEX into the proximal tubule and thereby decreases the diuretic activity of DEMADEX.
Other diuretics are known to reduce the renal clearance of lithium, inducing a high risk of lithium toxicity, so coadministration of lithium and diuretics should be undertaken with great caution, if at all. Coadministration of lithium and DEMADEX has not been studied.
Other diuretics have been reported to increase the ototoxic potential of aminoglycoside antibiotics and of ethacrynic acid, especially in the presence of impaired renal function. These potential interactions with DEMADEX have not been studied.
Carcinogenesis, Mutagenesis, Impairment of Fertility
No overall increase in tumor incidence was found when torsemide was given to rats and mice throughout their lives at doses up to 9 mg/kg/day (rats) and 32 mg/kg/day (mice). On a body-weight basis, these doses are 27 to 96 times a human dose of 20 mg; on a body-surface-area basis, they are 5 to 8 times this dose. In the rat study, the high-dose female group demonstrated renal tubular injury, interstitial inflammation, and a statistically significant increase in renal adenomas and carcinomas. The tumor incidence in this group was, however, not much higher than the incidence sometimes seen in historical controls. Similar signs of chronic non-neoplastic renal injury have been reported in high-dose animal studies of other diuretics such as furosemide and hydrochlorothiazide.
No mutagenic activity was detected in any of a variety of in vivo and in vitro tests of torsemide and its major human metabolite. The tests included the Ames test in bacteria (with and without metabolic activation), tests for chromosome aberrations and sister-chromatid exchanges in human lymphocytes, tests for various nuclear anomalies in cells found in hamster and murine bone marrow, tests for unscheduled DNA synthesis in mice and rats, and others.
In doses up to 25 mg/kg/day (75 times a human dose of 20 mg on a body-weight basis; 13 times this dose on a body-surface-area basis), torsemide had no adverse effect on the reproductive performance of male or female rats.
Pregnancy
Pregnancy Category B
There was no fetotoxicity or teratogenicity in rats treated with up to 5 mg/kg/day of torsemide (on a mg/kg basis, this is 15 times a human dose of 20 mg/day; on a mg/m2 basis, the animal dose is 10 times the human dose), or in rabbits, treated with 1.6 mg/kg/day (on a mg/kg basis, 5 times the human dose of 20 mg/kg/day; on a mg/m2 basis, 1.7 times this dose). Fetal and maternal toxicity (decrease in average body weight, increase in fetal resorption and delayed fetal ossification) occurred in rabbits and rats given doses 4 (rabbits) and 5 (rats) times larger. Adequate and well-controlled studies have not been carried out in pregnant women. Because animal reproduction studies are not always predictive of human response, thi |