ine against laboratory and clinical isolates of HIV-1 was assessed in lymphoblastoid cell lines, the MAGI-CCR5 cell line, and peripheral blood mononuclear cells. The 50% effective concentration (EC50) value for emtricitabine was in the range of 0.0013–0.64 µM (0.0003–0.158 µg/mL). In drug combination trials of emtricitabine with nucleoside reverse transcriptase inhibitors (abacavir, lamivudine, stavudine, tenofovir, zalcitabine, zidovudine), non-nucleoside reverse transcriptase inhibitors (delavirdine, efavirenz, nevirapine), and protease inhibitors (amprenavir, nelfinavir, ritonavir, saquinavir), additive to synergistic effects were observed. Emtricitabine displayed antiviral activity in cell culture against HIV-1 clades A, B, C, D, E, F, and G (EC50 values ranged from 0.007–0.075 µM) and showed strain specific activity against HIV-2 (EC50 values ranged from 0.007–1.5 µM).
The in vivo activity of emtricitabine was eva luated in two clinical trials in which 101 subjects were administered 25–400 mg a day of Emtriva as monotherapy for 10–14 days. A dose-related antiviral effect was observed, with a median decrease from baseline in plasma HIV-1 RNA of 1.3 log10 at a dose of 25 mg once daily and 1.7 log10 to 1.9 log10 at a dose of 200 mg once daily or twice daily.
Resistance
Emtricitabine-resistant isolates of HIV-1 have been selected in cell culture and in vivo. Genotypic analysis of these isolates showed that the reduced susceptibility to emtricitabine was associated with a substitution in the HIV-1 reverse transcriptase gene at codon 184 which resulted in an amino acid substitution of methionine by valine or isoleucine (M184V/I).
Emtricitabine-resistant isolates of HIV-1 have been recovered from some subjects treated with emtricitabine alone or in combination with other antiretroviral agents. In a clinical trial of treatment-naive subjects treated with Emtriva, didanosine, and efavirenz [See Clinical Studies (14.1)], viral isolates from 37.5% of subjects with virologic failure showed reduced susceptibility to emtricitabine. Genotypic analysis of these isolates showed that the resistance was due to M184V/I substitutions in the HIV-1 reverse transcriptase gene.
In a clinical trial of treatment-naive subjects treated with either Emtriva, VIREAD, and efavirenz or zidovudine/lamivudine and efavirenz [See Clinical Studies (14.1)], resistance analysis was performed on HIV-1 isolates from all confirmed virologic failure subjects with greater than 400 copies/mL of HIV-1 RNA at Week 144 or early discontinuation. Development of efavirenz resistance-associated substitutions occurred most frequently and was similar between the treatment arms. The M184V amino acid substitution, associated with resistance to Emtriva and lamivudine, was observed in 2/19 analyzed subject isolates in the Emtriva + VIREAD group and in 10/29 analyzed subject isolates in the lamivudine/zidovudine group. Through 144 weeks of Study 934, no subjects have developed a detectable K65R substitution in their HIV-1 as analyzed through standard genotypic analysis.
Cross Resistance
Cross-resistance among certain nucleoside analog reverse transcriptase inhibitors has been recognized. Emtricitabine-resistant isolates (M184V/I) were cross-resistant to lamivudine and zalcitabine but retained sensitivity in cell culture to didanosine, stavudine, tenofovir, zidovudin